机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 80-95.doi: 10.3901/JME.2023.20.080
王海斗, 张文宇, 宋巍
收稿日期:
2023-07-03
修回日期:
2023-08-20
出版日期:
2023-10-20
发布日期:
2023-12-08
作者简介:
王海斗,男,1969年出生,博士,研究员,博士研究生导师。主要研究方向为再制造工程和表面工程。E-mail:wanghaidou@tsinghua.org.cn;张文宇,男,1989年出生,博士。主要研究方向为再制造工程。E-mail:wenyu_zhang123@163.com;宋巍,女,1982年出生,硕士,副研究员。主要研究方向为表面工程。E-mail:songwei9305@sohu.com
基金资助:
WANG Haidou, ZHANG Wenyu, SONG Wei
Received:
2023-07-03
Revised:
2023-08-20
Online:
2023-10-20
Published:
2023-12-08
摘要: 再制造是我国战略性新兴产业,是促进循环经济建设和落实“双碳”目标的重要着力点。梳理汇总了对再制造有近百年探索的美国、全面推行绿色循环经济发展的欧洲、以及以日本韩国为代表的亚洲地区的再制造产业发展现状和对策战略。聚焦我国再制造二十余年发展历程,回顾了在再制造政策和产业方面取得的成果,对比了欧洲、美国以再制造市场需求为主导的再制造模式以及我国以政策为牵引,以重点领域和重点企业为支点,以高质量发展为目标的再制造产业发展路线。介绍了拆卸与清洗、损伤检测与寿命评估和以喷涂、熔覆、电刷镀为代表的成形修复和强化关键共性技术的研究进展。结合“十四五”阶段推进制造业高端化智能化改革、深化发展方式绿色转型等重点任务,分析了再制造的热点应用领域和技术发展趋势,提出通过再制造与数字化、信息化和智能化技术深度融合的发展模式以加速建设智能化再制造体系,加强对盾构机、航天航空设备等高端装备领域的再制造突破,挖掘以风能发电设备、电动汽车关键零部件代表的新能源领域再制造潜力三大发展策略,为未来再制造研究和政策制定提供参考和借鉴。
中图分类号:
王海斗, 张文宇, 宋巍. 再制造二十年足迹及发展趋势[J]. 机械工程学报, 2023, 59(20): 80-95.
WANG Haidou, ZHANG Wenyu, SONG Wei. Twenty Years of Remanufacturing Footprint and Development Trends[J]. Journal of Mechanical Engineering, 2023, 59(20): 80-95.
[1] 徐滨士,张伟,刘世参,等. 21世纪再制造表面工程[C]//中国科学技术协会学会学术部会议论文集,1999:384-385. XU Binshi,ZHANG Wei,LIU Shican,et al. 21st Century remanufacturing surface engineering [C]//Proceedings of the Academic Department of the Chinese Association for Science and Technology,1999:384-385. [2] 徐滨士,刘世参,王海斗. 大力发展再制造产业[J]. 求是,2005(12):46-47. XU Binshi,LIU Shican,WANG Haidou. Vigorously developing the remanufacturing industry[J]. Qiushi,2005(12):46-47. [3] 谢振华. 努力实现中国再制造产业发展的新突破[J]. 中国表面工程,2011,24(3):1-3. XIE Zhenghua. Efforts to achieve new breakthroughs in the development of remanufacturing industry[J]. China Surface Engineering,2011,24(3):1-3. [4] 朱胜,姚巨坤,江志刚. 绿色再制造工程[M]. 北京:机械工业出版社,2022. ZHU Sheng,YAO Jukun,JIANG Zhigang. Green remanufacture engineering[M]. Beijing:China Machine Press,2022. [5] Rochester Institute of Technology. Technology roadmap for remanufacturing in the circular economy[R/OL]. (2017-05-31)[2023-05-15]. https://www.rit.edu/sustainabilityinstitute/public/Reman_Roadmap_2017.pdf. [6] LUND R T. Remanufacturing:the experience of the United States and implications for developing countries[R]. World Bank Technical Paper #31,1985,Washington,D.C.,US. [7] U.S. Agency for International Development. Promoting a circular economy[EB/OL]. [2023-05-15]. https://www.usaid.gov/energy/sure/circular-economy. [8] U.S. Environmental Protection Agency. National framework for advancing the U.S. recycling system[R/OL]. (2019-11-01)[2023-05-15]. https://www.epa.gov/sites/default/files/2019-11/documents/national_framework.pdf#:~:text=The%20National%20Framework%20for%20Advancing%20the%20U.S.%20Recycling,collaborative%20effort%20that%20began% 20on%20November%2015%2C%202018. [9] U.S. Environmental Protection Agency. National recycling strategy:part one of a series on building a circular economy for all[R/OL]. (2021-11-15)[2023-05-15]. https://www.epa.gov/system/files/documents/2021-11/final-national-recycling-strategy.pdf. [10] U.S. International Trade Commission. Remanufactured Goods:An overview of the U.S. and global industries,markets,and trade[R/OL]. (2012-10-01)[2023-05-15]. https://www.usitc.gov/publications/332/pub4356.pdf. [11] European Remanufacturing Network. Remanufacturing market study[R/OL]. (2015-10-01)[2023-05-15]. https://www.remanufacturing.eu/assets/pdfs/remanufacturing-market-study.pdf. [12] MATSUMOTO M,CHINEN K,ENDO H. Remanufactured auto parts market in Japan:Historical review and factors affecting green purchasing behavior[J]. Journal of Cleaner Production,2018,172:4494-4505. [13] Ministry of Environment of Japan. Fourth fundamental plan for establishing a sound material-cycle society[R/OL]. (2019-03-11)[2023-05-15). https://www.env.go.jp/recycle/recycle/circul/keikaku/pam4_E.pdf#:~:text=The%20Fundamental%20Plan%20for%20Establishing%20a%20Sound%20Material-Cycle,establishment%20of% 20a%20sound%20material-cycle%20society%20in%20Japan. [14] Asia-Pacific Economic Cooperation (APEC),Centre for Remanufacturing and Reuse for Nathan Association Inc. Remanufacturing in Malaysia – An assessment of the current and future remanufacturing industry [C]//48th Market Access Group Meeting,Clark,Philippines,February 1,2015. [15] NGU H J,LEE M D,OSMAN M S B. Review on current challenges and future opportunities in Malaysia sustainable manufacturing:Remanufacturing industries[J]. Journal of Cleaner Production,2020,273:123071. [16] YUSOP N M,WAHAB D A,SAIBANI N. Realising the automotive remanufacturing roadmap in Malaysia:Challenges and the way forward [J]. Journal of Cleaner Production,2016,112:1910-1919. [17] Department of Statistics Malaysia. Sustainable Development Goals[EB/OL]. [2023-05-15]. https://www.dosm.gov.my/v1/index.php?r=column/cone&menu_id=UFkzK2xjRE04OVVRKzhOeXd6UWk2UT09. [18] JUN Y S,KANG H Y,KIM Y C,et al. Introduction of quality certification system for remanufactured products in South Korea [C]//World Remanufacturing Conference. Rochester NY,U.S.A.,September 19,2018. [19] 上海市循环经济协会. 上海市循环经济和资源综合利用产业发展报告(2021)[R/OL]. (2021-08-01)[2023-4-15]. https://www.shace.org.cn/newsinfo/1987456.html. [20] 李六柯,张则强,朱立夏,等. 多目标不完全拆卸线平衡问题的建模与优化[J]. 机械工程学报,2018,54(3):125-136. LI Liuke,ZHANG Zeqiang,ZHU Lixia,et al. Modeling and optimizing for multi-objective partial disassembly line balancing problem[J]. Journal of Mechanical Engineering,2018,54(3):125-136. [21] 张雷,阚欢迎,田晓飞,等. 面向高效的并行拆卸序列优化方法[J]. 机械设计与制造,2020(11):73-77. ZHANG Lei,KAN Huanying,TIAN Xiaofei,et al. Efficient parallel disassembly sequence optimization method[J]. Machinery Design & Manufacturing,2020(11):73-77. [22] 高举红,刘晓瑜,滕金辉,等. 考虑产品可拆卸性的再制造模式决策[J]. 系统工程,2017,35(1):110-118. GAO Juhong,LIU Xiaoyu,TENG Jinhui,et al. Decision-making of remanufacturing considering product disassemblability[J]. System Engineering,2017,35(1):110-118. [23] 谷新军,郭秀萍. 随机混流U型拆卸线平衡排序问题多目标进化算法优化[J]. 运筹与管理,2017,26(9):52-61. GU Xinjun,GUO Xiuping. Multi-objective evolutionary algorithm optimization of stochastic mixed-model U-shaped disassembly line balancing and sequencing problem[J]. Operations Research and Management Science,2017,26(9):52-61. [24] 吴远峰,陈二蒙,倪静. 面向低碳高效的U型拆卸线平衡优化[J]. 组合机床与自动化加工技术,2021(3):153-158. WU Yuanfeng,CHEN Ermeng,NI Jing. Optimization of U-shaped disassembly line balancing for low carbon emission and high efficiency[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(3):153-158. [25] 姚巨坤,崔培枝. 再制造清洗技术研究[J]. 工程机械与维修,2007(2):180. YAO Jukun,CUI Peizhi. Research on remanufacturing cleaning technology [J] Engineering Machinery and Maintenance,2007(2):180. [26] 单腾,王思捷,殷凤仕,等. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报,2021,35(11):11164-11173. SHAN Teng,WANG Sijie,YIN Fengshi,et al. A review of the application of laser cleaning and its influences on the substrate surface integrity[J]. Materials Report,2021,35(11):11164-11173. [27] SHAN T,YIN F S,WANG S J,et al. Study on the surface integrity control of laser cleaning of aluminum alloy surface paint layer[J]. Applied Optics,2020,59(30):1-7. [28] 成健,方世超,刘顿,等.金属表面激光清洗技术及其应用[J]. 应用激光,2018,38(6):1028-1037. CHENG Jian,FANG Shichao,LIU Dun,et al. Technology and application of laser cleaning for metal surface[J]. Applied Laser,2018,38(6):1028-1037. [29] 刘鹏飞,王思捷,刘照围,等. 激光清洗技术的应用研究进展[J]. 材料保护,2020,53(4):43-146. LIU Pengfei,WANG Sijie,LIU Zhaowei,et al. Research progress in application of laser cleaning technology[J]. Materials Protection,2020,53(4):43-146. [30] 徐滨士. 绿色再制造工程及其在装备防腐蚀方面的应用[J]. 材料保护,2010,43(4):1-5. XU Binshi. Green remanufacturing engineering and its application in preventing equipment from corrosion[J]. Materials Protection,2010,43(4):1-5. [31] 宋亚南,徐滨士,王海斗,等. 金属材料超高周疲劳的试验方法及失效特征[J]. 中国有色金属学报,2015,25(12):3245-3254. SONG Yanan,XU Binshi,WANG Haidou,et al. Testing method and failure characters of very high cycle fatigue of metal materials[J]. The Chinese Journal of Nonferrous Metals,2015,25(12):3245-3254. [32] 薛冰,雷卫宁,刘骁,等. 低碳钢电弧熔覆层材料摩擦磨损及抗腐蚀性能[J]. 表面技术,2020,49(9):225-232. XUE Bing,LEI Weining,LIU Xiao,et al. Friction and wear resistance and corrosion resistance of low carbon steel arc welding additive layer[J]. Surface Technology,2020,49(9):225-232. [33] 董丽虹,郭伟,陈茜,等. 再制造零件无损评价技术及应用[M]. 哈尔滨:哈尔滨工业大学出版社,2019. DONG Lihong,GUO Wei,CHEN Xi,et al. Non-destructive evaluation of remanufacturing parts technology and applications[M]. Harbin:Harbin Institute of Technology Press,2019. [34] WANG B,ZHONG S,LEE T L,et al. Non-destructive testing and evaluation of composite materials/structures:A-state-of-the-art review[J]. Advances in Mechanical Engineering,2020,12(4):1-28. [35] PLESSIS A D,YADROITSEV I,YADROITSAVA I,et al. X-ray Microcomputed Tomography in Additive Manufacturing:A Review of the Current Technology and Applications[J]. 3D Printing and Additive Manufacturing,2018,5(3):227-247. [36] 徐春广,李卫彬. 无损检测超声波理论[M]. 北京:科学出版社,2020. XU Chunguang,LI Weibin. Ultrasonic theory for non-destructive testing [M]. Beijing:Science Press,2020. [37] ABDALLA A N,FARAJ M A,SAMSURI F,et al. Challenges in improving the performance of eddy current testing:Review[J]. Measurement and Control,2019,52(1-2):46-64. [38] 聂小武,鲁世强,王克鲁. 铸件磁粉检测缺陷分析及预防[J]. 铸造,2006,55(10):1056-1059. NIE Xiaowu,LU Shiqiang,WANG Kelu. Cause analysis of the defects in castings detected by magnetic particle test and their prevention[J]. Foundry,2006,55(10):1056-1059. [39] 李家伟,陈积懋. 无损检测手册[M]. 北京:机械工业出版社,2002. LI Jiawei,CHEN Jimao. Nondestructive testing manual[M]. Beijing:China Machine Press,2002. [40] 王海斗,邢志国,董丽虹,等. 再制造零件与产品的疲劳寿命评估技术[M]. 哈尔滨:哈尔滨工业大学出版社,2019. WANG Haidou,XING Zhiguo,DONG Lihong,et al. Fatigue life assessment technique for remanufactured parts and product[M]. Harbin:Harbin Institute of Technology Press,2019. [41] 李俊超,朱丽娜,马国政,等. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报,2018,32(11):3796-3804. LI Junchao,ZHU Lina,MA Guozheng,et al. Research status on quality inspection and life evaluation of self-lubricating spherical plain bearings[J]. Materials Report,2018,32(11):3796-3804. [42] 何芝仙,桂长林,李震,等. 基于动力学何摩擦学分析的曲轴疲劳强度分析[J]. 内燃机学报,2008,26(5):470. HE Zhixian,GUI Changlin,LI Zhen,et al. Study on fatigue strength of crankshaft-bearing system of engine crankshaft based on dynamic and tribological analysis[J]. Transactions of CSICE,2008,26(5):470. [43] 肖坤宇,徐彤,苏成明,等. 液压支架关键部件失效分析与寿命评估研究进展[J]. 中国表面工程,2022,35(1):97-105. XIAO Kunyu,XU Tong,SU Chengming,et al. Research progress on failure analysis and life assessment of key compeonents in hydraulic supports[J]. China Surface Engineering,2022,35(1):97-105. [44] 周迅,俞小莉. 曲轴疲劳裂纹扩展规律测试及形成机理分析[J]. 机械工程学报,2008,44(1):238-242. ZHOU Xun,YU Xiaoli. Fatigue crack growth regular tests for engine crankshaft and analysis on the mechanism[J]. Journal of Mechanical Engineering,2008,44(1):238-242. [45] 华亮,田威. 激光熔覆再制造车轮损伤及寿命评估研究[J]. 激光与红外,2022,52(10):1481-1486. HUA Liang,TIAN Wei. Study on laser cladding remanufactured wheel damage and life evaluation[J]. Laser & Infrared,2022,52(10):1481-1486. [46] 李彦伟,林晶,张令,等. 基于Weibull分布的高速自润滑关键轴承可靠性分析[J]. 轴承,2014(9):40. LI Yanwei,LIN Jing,ZHANG Ling,et al. Reliability analysis of high speed self-lubricating spherical plain bearings based on Weibull distribution[J]. Bearing,2014(9):40. [47] 宋长虹,张亚然,李世明,等. 等离子喷涂技术制备陶瓷涂层新进展[J]. 热喷涂技术,2017,9(4):1-6. SONG Changhong,ZHANG Yaran,LI Shiming,et al. Research progress on fabrication of ceramic coatings by plasma spraying technology[J]. Thermal Spray Technology,2017,9(4):1-6. [48] 梁秀兵,陈永雄,白金元,等. 自动化高速电弧喷涂技术再制造发动机曲轴[J]. 中国表面工程,2010,23(2):112-116. LIANG Xiubing,CHEN Yongxiong,BAI Jinyuan,et al. An automatic high velocity arc spraying technology applied to remanufacture engine crankshaft[J]. China Surface Engineering,2010,23(2):112-116. [49] 徐国,郑卫刚. 超音速火焰喷涂在活塞环表面改性中的应用探究[J]. 热加工工艺,2014,43(14):167-168. XU Guo,ZHENG Weigang. Research on application of HVOF in surface modification of piston ring[J]. Hot Working Technology,2014,43(14):167-168. [50] 黄春杰,殷硕,李文亚,等. 冷喷涂技术及其系统的研究现状与展望[J]. 表面技术,2021,50(7):1-23. HUANG Chunjie,YIN Shuo,LI Wenya,et al. Cold spray technology and its system:research status and prospect[J]. Surface Technology,2021,50(7):1-23. [51] 王海斗,何鹏飞,陈书赢,等. 内孔热喷涂技术的研究现状与展望[J]. 中国表面工程,2018,31(5):14-38. WANG Haidou,HE Pengfei,CHEN Shuying,et al. Research and prospect on internal thermal spraying technologies[J]. China Surface Engineering,2018,31(5):14-38. [52] 陈永雄,罗政刚,梁秀兵,等. 热喷涂技术的装备应用现状及发展前景[J]. 中国表面工程,2021,34(4):12-18. CHEN Yongxiong,LUO Zhenggang,LIANG Xiubing,et al. Development status and prospect on equipment application of thermal spray technology[J]. China Surface Engineering,2021,34(4):12-18. [53] 董世运,闫世兴. 激光再制造技术发展现状与前景展望[J]. 表面工程与再制造,2021,21(6):17-26. DONG Shiyun,YAN Shixing The Development Status and Prospects of Laser Remanufacturing Technology [J] Surface Engineering and Remanufacturing,2021,21(6):17-26 [54] 张津超,石世宏,龚燕琪,等. 激光熔覆技术研究进展[J]. 表面技术,2020,49(10):1-11. ZHANG Jinchao,SHI Shihong,GONG Yanqi,et al. Research progress of laser cladding technology[J]. Surface Technology,2020,49(10):1-11. [55] 陈影,孙文磊,黄勇,等. 激光熔覆曲面零件再制造的机器人路径规划[J]. 中国激光,2017,44(5):79-88. CHEN Ying,SUN Wenlei,HUANG Yong,et al. Robot path planning of laser cladding and remanufacturing of curved surface parts[J]. Chinese Journal of Lasers,2017,44(5):79-88. [56] 傅卫,方洪渊,白新波,等. 工艺路径对多层多道激光熔覆残余应力的影响[J]. 焊接学报,2019,40(6):29-33. FU Wei,FANG Hongyuan,BAI Xinbo,et al. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. Transactions of the China Welding Institution,2019,40(6):29-33. [57] 李向波,李涛,石博文,等. 基于齿面缺陷激光修复几何数学模型的齿轮修复[J]. 中国表面工程,2020,33(3):129-136. LI Xiangbo,LI Tao,SHI Bowen,et al. Gear repairing based on geometric mathematical model of tooth surface defects by laser[J]. China Surface Engineering,2020,33(3):129-136. [58] 罗奎林,郭双全,何勇,等. 激光熔覆修复航空发动机风扇机匣TC4钛合金静子叶片[J]. 中国表面工程,2015,28(6):141-146. LUO Kuilin,GUO Shuangquan,HE Yong,et al. Repairing TC4 titanium stator blade of aero-engine fan casing by laser cladding[J]. China Surface Engineering,2015,28(6):141-146. [59] 刘钊鹏,顾俊,王健超. 激光熔覆技术在高速转子轴修复中的应用研究[J]. 应用激光,2019,39(5):750-755. LIU Zhaopeng,GU Jun,WANG Jianchao. Application research of laser cladding technology in high speed rotor shaft repair[J]. Applied Laser,2019,39(5):750-755. [60] ZHANG W,LI B,JI C. Synthesis and characterization of Ni-W/TiN nanocomposite coating with enhanced wear and corrosion resistance deposited by pulse electrodeposition[J]. Ceramics International,2019,45(11):14015-14028. [61] LAMPKE T,DIETRICH D,LEOPOLD A,et al. Cavitation erosion of electroplated nickel composite coatings[J]. Surface and Coatings Technology,2008,202(16):3967-3974. [62] LI X X,WANG X,CHEN B Q,et al. Effect of ultrasonic surface rolling process on the surface properties of CuCr alloy[J]. Vacuum,2023(209):111819. [63] 李礼,朱有利,吕光义. 超声深滚降低TC4钛合金表面粗糙度和修复表面损伤的作用[J]. 稀有金属材料与工程,2009,38(2):339-342. LI Li,ZHU Youli,LÜ Yiguang. Influence of ultrasonic deep rolling on reducing surface roughness and healing surface scar of TC4 titanium alloy[J]. Rare Metal Materials and Engineering,2009,38(2):339-342. [64] 李占明,王美红,孙晓峰,等. 高速微粒轰击对微弧氧化铝合金疲劳性能的影响[J]. 稀有金属材料与工程,2018,47(7):2179-2184. LI Zhanming,WANG Hongmei,SUN Xiaofeng,et al. Effect of high-speed particles bombarding pre-treatment on the fatigue properties of micro-arc oxidation aluminum alloy[J]. Rare Metal Materials and Engineering,2018,47(7):2179-2184. [65] 董娜,丁艳红,卢德钊. 20CrMnTi钢喷丸参数的研究[J]. 机械设计与制造,2019(S1):95-98. DONG Na,DING Yanhong,LU Dezhao. Study on the shot peening parameters of 20CrMnTi steel[J]. Machinery Design & Manufacture,2019(S1):95-98. [66] CHEN Y X,WANG J C,GAO Y K,et al. Effect of shot peening on fatigue performance of Ti2ALNb intermetallic alloy[J]. International Journal of Fatigue,2019(127):53-57. [67] HU D,GAO Y,MENG F,et al. A unifying approach in simulating the shot peening process using a 3D random representative volume finite element method[J]. Chinese Journal of Aeronautics,2017(4):1592-1602. [68] 徐滨士,夏丹,谭君洋,等. 中国智能再制造的现状与发展[J]. 中国表面工程,2018,31(5):1-13. XU Binshi,XIA Dan,TAN Junyang,et al. Status and development of intelligent remanufacturing in China[J]. China Surface Engineering,2018,31(5):1-13. [69] 徐滨士. 新时代中国特色再制造的创新发展[J]. 中国表面工程,2018,31(1):1-6. XU Binshi. Innovation and development of remanufacturing with Chinese characteristics for a new era[J]. China Surface Engineering,2018,31(1):1-6. [70] ZHOU W,PIRAMUTHU S. Remanufacturing with RFID item-level information:optimization,waste reduction and quality improvement. International Journal of Economics,2013. 145(2):647-657. [71] 李文川,章鑫,高思源. 制造/再制造企业RFID技术采纳的投资决策分析[J]. 计算机集成制造系统,2019,25(8):2079-2086. LI Wenchuan,ZHANG Xin,GAO Siyuan. Investment decision-making of manufacturing/remanufacturing enterprise’s radio frequency identification technology adoption[J]. Computer Integrated Manufacturing Systems,2019,25(8):2079-2086. [72] 高杨,李健. 基于物联网技术的再制造闭环供应链信息服务系统研究[J]. 科技进步与对策,2014,31(3):19-25. Gao Yang,Li Jian. Research on remanufacturing closed loop supply chain information service system based on internet of things technology[J]. Science and Technology Progress and Countermeasures,2014,31(3):19-25 [73] XU F C,LI Y J,FENG L P. The influence of big data system for used product management on manufacturing – remanufacturing operations[J]. Journal of Cleaner Production,2019,209:782-794. [74] 王婷,廖斌,杨承诚. 大数据驱动的绿色智能制造模式及实现技术[J]. 重庆大学学报,2020,43(1):64-73. WANG Ting,LIAO Bin,YANG Chengcheng. Research on big-data-driven green intelligent manufacturing mode and the implementation design[J]. Journal of Chongqing University,2020,43(1):64-73. [75] 刘丹,黄海涛,王保兴,等. 基于数字孪生的再制造车间作业模式[J]. 计算机集成制造系统,2019,25(6):1515-1527. LIU Dan,HUANG Haitao,WANG Baoxing,et al. Operation paradigm for remanufacturing shop-floor based on digital twin[J]. Computer Integrated Manufacturing Systems,2019,25(6):1515-1527. [76] 杜彦斌,李博,何国华,等. 数字孪生驱动的机床预测性再制造新模式研究[J]. 计算机集成制造系统,2022,28(12):3758-3767. DU Yanbin,LI Bo,HE Guohua,et al. New predictive remanufacturing model of machine tool driven by digital twins[J]. Computer Integrated Manufacturing Systems,2022,28(12):3758-3767. [77] 李文辉,温学杰,李秀红,等. 航空发动机叶片再制造技术的应用及其发展趋势[J]. 金刚石与磨料磨具工程,2021,41(4):8-18. LI Wenhui,WEN Xuejie,LI Xiuhong,et al. Application and development trend of aero-engine blade remanufacturing technology[J]. Diamond & Abrasives Engineering,2021,41(4):8-18. [78] 张静,农昌瑞,张海兵,等. 基于深度学习的发动机叶片故障检测技术[J]. 航空发动机,2022,48(1):68-75. ZHANG Jing,NONG Changrui,ZHANG Haibing,et al. Fault detection technology of engine blade based on deep learning[J]. Aeroengine,2022,48(1):68-75. [79] 王栋欢,肖洪,吴丁毅. 基于深度学习的航空发动机涡轮叶片自动射线检测技术研究[J/OL]. [2023-05-12]. 推进技术,https://doi.org/10.13675/j.cnki.tjjs.2210024. WANG Donghuan,XIAO Hong,WU Dingyi. Automatic radiographic testing for aeroengine turbine blades based on deep learning[J/OL]. [2023-05-12]. Journal of Propulsion Technology,https://doi.org/10.13675/j.cnki.tjjs.2210024. [80] 刘宜轩,程志江,吴动波,等. 基于改进YOLOv5的航空发动机叶片表面缺陷检测方法研究[J]. 激光杂志,2023,44(7):57-61. LIU Yixuan,CHENG Zhijiang,WU Dongbo,et al. Research on surface defect detection method of aero-engine blade based on improved YOLOv5[J]. Laser Journal,2023,44(7):57-61. [81] PENARANDA X,MORALEJO S,LAMIKIZ A,et al. An adaptive laser cladding methodology for blade tip repair[J]. International Journal of Advanced Manufacturing Technology,2017,92:4337-4343. [82] 徐国建,郭云强,李春光,等. 飞机发动机叶片激光熔覆性能[J]. 焊接学报,2018,39(8):72-76. XU Guojian,GUO Yunqiang,LI Chunguang,et al. Research of laser cladding performance of engine blades[J]. Transactions of the China Welding Institution,2018,39(8):72-76. [83] 阮雪茜,张露,韩秀峰,等. 钛合金叶片的激光沉积修复技术研究[J]. 应用激光,2021,41(3):543-547. RUAN Xueqian,ZHANG Lu,HAN Xiufeng,et al. Research on laser deposition repair technology of Titanium alloy blades[J]. Applied Laser,2021,41(3):543-547. [84] WILSON J M,PIYA C,SHIN Y C,et al. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis[J]. Journal of Cleaner Production,2014,80:170-178. [85] 董艇舰,桑超,张吉. 航空发动机压气机叶片的逆向建模及应用[J]. 机械设计与制造,2022(1):193-197. DONG Tingjian,SANG Chao,ZHANG Ji. 3D model reconstruction and its application of aeroengine compressor blades[J]. Machinery Design & Manufacture,2022(1):193-197. [86] 张鹏程,刘瑾,杨海马,等. 航空发动机损伤叶片的激光交叠式三维重建[J]. 激光与光电子学进展,2020,57(16):161504. ZHANG Pengcheng,LIU Jin,YANG Haima,et al. Laser overlapping three-dimensional reconstruction of damaged aero engine blade[J]. Laser & Optoelectronics Progress,2020,57(16):161504. [87] 陈振林,陈志同,朱正清,等. 基于逆向工程的航空发动机叶片再制造修复方法研究[J]. 航空制造技术,2020,63(Z2):80-86. CHEN Zhenlin,CHEN Zhitong,ZHU Zhengqing,et al. Research on remanufacturing and repairing method of aero-engine blade based on reverse engineering[J]. Aeronautical Manufacturing Technology,2020,63(Z2):80-86. [88] 周新远,李恩重,张伟,等. 我国盾构机再制造产业现状及发展对策研究[J]. 现代制造工程,2019(8):157-161. ZHOU Xinyuan,LI Enzhong,ZHANG Wei,et al. Research on current situation and development strategies of shield machine remanufacturing[J]. Modern Manufacturing Engineering,2019(8):157-161. [89] 李方义,戚小霞,李燕乐,等. 盾构机关键零部件再制造修复技术综述[J]. 中国机械工程,2021,32(7):820-831. LI Fangyi,QI Xiaoxia,LI Yanle,et al. review on repair technologies for key part remanufacturing of shield machines[J]. China Mechanical Engineering,2021,32(7):820-831. [90] 吴伟才,潘真. 盾构机主轴承检测分析与再制造技术探讨[J]. 轴承,2020(6):13-17. WU Weicai,PAN Zhen. Detection analysis and remanufacturing technology discussion on main bearings of shield machine[J]. Bearing,2020(6):13-17. [91] 刘宣宇,王子文,邵诚,等. 盾构机机械类故障诊断研究进展综述[J]. 控制工程,2022,29(2):238-245. LIU Xuanyu,WANG Ziwen,SHAO Cheng,et al. Review on mechanical fault diagnosis of shield tunneling machine[J]. Control Engineering of China,2022,29(2):238-245. [92] 朱英伟,郑立波,张洪涛. 新型盾构机刀具磨损检测技术研究[J]. 施工技术,2014,43(1):121-123. ZHU Yingwei,ZHENG Libo,ZHANG Hongtao. Detection technology research on cutting tool wear of new shield machine[J]. Construction Technology,2014,43(1):121-123. [93] 吴恩启,侯天凡,闵锐,等. 类矩形盾构机刀盘受力分析与检测研究[J]. 机械强度,2021,43(3):538-545. WU Enqi,HOU Tianfan,MIN Rui,et al. Research on force analysis and detection of quasi-rectangular shield machine’s cutter heads[J]. Journal of Mechanical Strength,2021,43(3):538-545. [94] 刘峰,李超毅,秦鹏翔,等. 金属相成分对WC颗粒强化激光熔覆金属熔覆层力学性能的影响[J]. 材料保护, 2019,52(9):95-99. LIU Feng,LI Chaoyi,QIN Pengxiang,et al. Effect of metal phase composition on mechanical properties of laser cladded WC reinforced metallic composite coating[J]. Materials Protection,2019,52(9):95-99. [95] 张建川,张前峰,蔡红军. 风力发电复合材料叶片废弃物的几种处理方法分析[J]. 材料科学与工程学报,2012,30(3):473-482. ZHANG Jianchuan,ZHANG Qianfeng,CAI Hongjun. Analysis on treatment methods of composite blade wastes of wind turbines[J]. Journal of Materials Science & Engineering,2012,30(3):473-482. [96] 刘洪冰,姚鹏,李振国,等. 基于再制造技术的风电机组偏航制动盘修复[J]. 可再生能源,2022,40(7):921-925. LIU Hongbing,YAO Peng,LI Zhenguo,et al. Repairing for yaw discs of wind turbines based on a remanufacturing technology[J]. Renewable Energy Resources,2022,40(7):921-925. [97] LONGANA M L,ONG N,YU H,et al. Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (high performance discontinuous fibre) method[J]. Composition Structure,2016,153:271-277. [98] CHEN J L,WANG J H,NI A Q. Recycling and reuse of composite materials for wind turbine blades:An overview[J]. Journal of Reinforced Plastics & Composites,2019,38,12:567-577. [99] ORTEGON K,NIES L F,SUTHERLAND J W. The impact of maintenance and technology change on remanufacturing as recovery alternative for used wind turbines[C]//21st CIRP Conference on Life Cycle Engineering,2014,15:182-188. [100] DAHANE M,SAHNOUN M,BETTAYEB B,et al. Impact of spare parts remanufacturing on the operation and maintenance performance of offshore wind turbines:a multi-agent approach[J]. Journal of Intelligent Manufacturing,2017,28:1531-1549. [101] NICOLAI M R,WATSON R. Decommissioning and recycling of large wind turbines[C]//EWEC 97 European Wind Energy Conference; Proceedings of the International Conference. Dublin Castle,Ireland,1998,3(4):189-192. [102] ORTEGON K,NIES L F,SUTHERLAND J W. Preparing for end of service life of wind turbines[J]. Journal of Cleaner Production,2013,39:191-199. [103] 丁锐,秦训鹏,董书洲. 电动汽车驱动电机再制造生命周期评价[J]. 环境污染与防治,2021,43(11):1410-1420. DING Rui,QIN Xunpeng,DONG Shuzhou. Life cycle assessment of remanufactured drive motor on electric vehicle[J]. Environmental Pollution & Control,2021,43(11):1410-1420. [104] CIEZ R E,WHITACRE J F. Examining different recycling processes for lithium-ion batteries[J]. Nature Sustainability,2019,2:148-156. [105] CHEN,M Y,MA X T,CHEN B,et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule,2019,3(11):2622-2646. [106] HARPER G,SOMMERVILLE R,KENDRICK E,et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature,2019,575:75-86. [107] DING R,QIN X P,DONG S Z. Life cycle assessment of remanufactured drive motor on electric vehicle[J]. Environmental Pollution & Control,2021,43(11):1410-1420. [108] GIRARDI P,GARGIULO A,BRAMBILLA P C. A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix:the Italian case study[J]. International Journal of Life Cycle Assessment,2015,20:1127-1142. [109] CASTRO F D,CUTAIA L,VACCARI M. End-of-life automotive lithium-ion batteries (LIBs) in Brazil:Prediction of flows and revenues by 2030[J]. Resources Conservation and Recycling,2021,169:105522. [110] CHEN Q W,LAI X,GU H H,et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China[J]. Journal of Cleaner Production,2022,369:133342. [111] YU M H,BAI B,XIONG S Q,et al. Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries[J]. Journal of Cleaner Production,2022,321:128935. |
[1] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[2] | 郭江, 潘博, 连佳乐, 杨哲, 刘欢, 高菲, 康仁科. 双面研磨技术研究现状与发展趋势[J]. 机械工程学报, 2024, 60(7): 266-288. |
[3] | 胡松, 徐赵博, 肖磊才, 冯平法, 曾龙. 面向跨品类产品的可重构柔性装配技术研究[J]. 机械工程学报, 2024, 60(6): 69-81. |
[4] | 杨树财, 韩佩, 佟欣, 刘献礼, 张晓辉. 刀具介观几何特征成形技术及其作用研究[J]. 机械工程学报, 2024, 60(5): 317-351. |
[5] | 刘松, 李俊辉, 刘云飞, 计江, 谢维维, 窦锋, 刘江林, 柳宇. 特种合金极薄带轧制工艺与技术装备的研制[J]. 机械工程学报, 2024, 60(4): 357-368. |
[6] | 孙之琳, 王凯峰, 顾佩华. 设计理论与方法研究的回顾与展望[J]. 机械工程学报, 2024, 60(13): 2-20. |
[7] | 童哲铭, 马廷良, 刘浩. 基于高速图像特征提取的滑动轴承空化特性试验研究及其数值仿真分析[J]. 机械工程学报, 2024, 60(13): 48-55. |
[8] | 吴亚茹, 张振雨, 张扬泽, 吴甲民, 田冲, 黄海露, 林鑫, 史玉升. 造孔剂种类对数字光处理成形多孔Si3N4陶瓷性能的影响[J]. 机械工程学报, 2024, 60(11): 273-282. |
[9] | 普雪洁, 张建辉, 李建勇, 张健楠. 复杂技术系统隐性冲突求解路径规划方法[J]. 机械工程学报, 2024, 60(1): 309-328. |
[10] | 孙健淞, 康仁科, 周平, 董志刚, 王毅丹. 蜂窝芯超声切削技术研究进展[J]. 机械工程学报, 2023, 59(9): 298-319. |
[11] | 王蕾, 郭钰瑶, 曹建华, 张泽琳, 夏绪辉, 赵慧. 面向废旧机械产品广义生长的再制造服务组合与优化方法[J]. 机械工程学报, 2023, 59(7): 339-354. |
[12] | 王秀雨, 程江波, 葛云云, 张保森, 梁秀兵. 镁合金表面再制造AlCoTi非晶涂层组织及力学性能研究[J]. 机械工程学报, 2023, 59(7): 367-374,388. |
[13] | 成焕波, 郭立军, 周金虎, 王华锋, 汤明喜. 再生碳纤维回收利用及其增材制造复合材料性能评价[J]. 机械工程学报, 2023, 59(7): 375-388. |
[14] | 周丹, 王鹏程, 张腾飞, 宋守许. ZL101A合金TIG修复色差及组织性能间的相关性研究[J]. 机械工程学报, 2023, 59(7): 398-406. |
[15] | 郎宁, 王德成, 程鹏. 基于集成自适应欠采样的铝管表面缺陷检测方法研究[J]. 机械工程学报, 2023, 59(6): 18-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||