机械工程学报 ›› 2023, Vol. 59 ›› Issue (9): 298-319.doi: 10.3901/JME.2023.09.298
孙健淞, 康仁科, 周平, 董志刚, 王毅丹
收稿日期:
2022-05-20
修回日期:
2022-11-07
出版日期:
2023-05-05
发布日期:
2023-07-19
通讯作者:
王毅丹(通信作者),男,1989年出生,博士,博士后研究员。主要研究方向为复合材料超声加工技术与装备。E-mail:ydwang@dlut.edu.cn
E-mail:ydwang@dlut.edu.cn
作者简介:
孙健淞,男,1992年出生,博士研究生。主要研究方向为复合材料超声加工技术与装备。E-mail:sjs_06@mail.dlut.edu.cn
基金资助:
SUN Jiansong, KANG Renke, ZHOU Ping, DONG Zhigang, WANG Yidan
Received:
2022-05-20
Revised:
2022-11-07
Online:
2023-05-05
Published:
2023-07-19
摘要: 蜂窝夹层构件因其密度低、比强度和比刚度高等特性,广泛应用于航空航天等领域。Nomex蜂窝和铝蜂窝是广泛采用的蜂窝材料,但由于其薄壁、多孔等结构特征,在加工中容易出现撕裂和毛刺等问题。超声切削技术具有减小切削力、改善加工表面质量和提高加工效率等特点,作为解决蜂窝材料难加工问题的关键方法,近年来受到了国内外广泛关注。围绕刀具运动学和切削力模型、切削仿真、加工表面形貌与面形精度分析、加工轨迹规划方法和超声加工系统研制等方面,总结了蜂窝材料超声切削机理与工艺、超声切削系统与装备的研究现状,并对蜂窝材料超声切削技术的发展趋势与未来研究重点进行展望。
中图分类号:
孙健淞, 康仁科, 周平, 董志刚, 王毅丹. 蜂窝芯超声切削技术研究进展[J]. 机械工程学报, 2023, 59(9): 298-319.
SUN Jiansong, KANG Renke, ZHOU Ping, DONG Zhigang, WANG Yidan. Review on Ultrasonic Cutting of Honeycomb Core[J]. Journal of Mechanical Engineering, 2023, 59(9): 298-319.
[1] BITZER T N. Honeycomb technology:Materials,design,manufacturing,applications and testing[M]. London:Springer Science & Business Media,1997. [2] 张建明,党晓娟. 芳纶纸蜂窝芯材的制备技术及其应用研究进展[J]. 新材料产业. 2019(12):52-56. ZHANG Jianming,DANG Xiaojuan. Research progress on the preparation technology of aramid paper honeycomb core material and its application[J]. New Material Industry. 2019(12):52-56. [3] RION J,LETERRIER Y,MANSON J E. Prediction of the adhesive fillet size for skin to honeycomb core bonding in ultra-light sandwich structures[J]. Composites Part A-Applied Science and Manufacturing. 2008,39(9):1547-1555. [4] QIN Y,KANG R,DONG Z,et al. Burr removal from measurement data of honeycomb core surface based on dimensionality reduction and regression analysis[J]. Measurement Science & Technology. 2018,29(11):115010. [5] QIU K,MING W,SHEN L,et al. Study on the cutting force in machining of aluminum honeycomb core material[J]. Composite Structures. 2017,164:58-67. [6] CHINA D. DuPont™ Nomex® honeycomb materials manual.2012[2021-3-24]. www.nomex.com.cn. [7] PLASCORE I. PN2 aerospace grade aramid fiber honeycomb.2014[2021-3-24]. www.plascore.com. [8] HEXWEB. HexWeb™ honeycomb attributes and properties.1999[2021-3-24]. www.hexcel.com. [9] 梅明. 高强度蜂窝半格结构件滚压成形技术研究[D]. 长沙:中南大学,2013. MEI Ming. Research on Roll Forming Technology for High Strength Honeycomb Semi-grid Structural Parts[D]. Changsha:Central South University,2013. [10] AN Q,DANG J,MING W,et al. Experimental and numerical studies on defect characteristics during milling of aluminum honeycomb core[J]. Journal of Manufacturing Science and Engineering. 2019,141(3). [11] 马成,刘方军. 蜂窝材料加工工艺研究进展[J]. 航空制造技术,2016(3):48-54. MA Cheng,LIU Fangjun. Research progress of honeycomb material processing process[J]. Aerospace Manufacturing Technology,2016(3):48-54. [12] 王毅丹,康仁科,白杜娟,等. 高密度芳纶纸蜂窝的磨削试验[J]. 金刚石与磨料磨具工程. 2018,38(6):48-53. WANG Yidan,KANG Renke,BAI Dujian,et al. Experiment on grinding performance of high-density aramid honeycombs[J]. Diamond & Abrasives Engineering. 2018,38(6):48-53. [13] 马义新. 高密度芳纶纸蜂窝磨削加工试验研究[D]. 大连:大连理工大学,2019. MA Yixin. Experimental study on grinding performance of high-density Nomex honeycomb[D]. Dalian:Dalian University of Technology,2019. [14] MA Y,DONG Z,WANG Y. Experimental study on grinding performance of high-density Nomex honeycomb core[C]//Toronto:The 21st International Symposium on Advances in Abrasive Technology. 2018 [15] INC. H P. Process for machining expanded honeycomb[P]. US3413708A.[1968.12.3]. [16] HIRAYAMA A,SAITNMA-KEN. Method for cutting honeycomb core:US6740268B2[P].[20040525]. [17] WANG Y,GAN Y,LIU H,et al. Surface quality improvement in machining an aluminum honeycomb by ice fixation[J]. Chinese Journal of Mechanical Engineering. 2020,33(1). [18] WANG F,WANG Y. Investigate on milling force of cryogenic cooling processing aluminum honeycomb treated by ice fixation[J]. The International Journal of Advanced Manufacturing Technology. 2018,98(5-8):1253-1265. [19] WANG F,WANG Y. Optimization of cryogenic milling parameters for aluminum honeycomb treated by ice fixation method[J]. The International Journal of Advanced Manufacturing Technology. 2018,99(9-12):2271-2281. [20] QIU K,MING W,SHEN L,et al. Study on the cutting force in machining of aluminum honeycomb core material[J]. Composite Structures. 2017,164:58-67. [21] 许启灏. Nomex蜂窝材料切边加工损伤抑制试验研究[D]. 大连:大连理工大学,2019. XU Qihao. Experimental study on damage suppression of cutting edge processing of Nomex honeycomb materials[D]. Dalian:Dalian University of Technology,2019. [22] JIANG J,LIU Z. Formation mechanism of tearing defects in machining Nomex honeycomb core[J]. The International Journal of Advanced Manufacturing Technology. 2021,112(11-12):3167-3176. [23] GILL D,YIP-HOI D,MEAKER M,et al. Studying the mechanisms of high rates of tool wear in the machining of aramid honeycomb composites[C]. Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. Los Angeles,California,USA.:ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. 2017 [24] 李杰. Nomex纸基蜂窝材料的组合铣刀高速铣削研究[D]. 大连:大连理工大学,2012. LI Jie. High-speed milling of Nomex paper-based honeycomb materials with combined milling tools[D]. Dalian:Dalian University of Technology,2012. [25] 唐臣升. 高效纸蜂窝复合材料专用刀具及其加工方法的研究[C]//第17届全国复合材料学术会议论文集. 北京:第17届全国复合材料学术会议. 2012,5. TANG Chensheng. Research on high efficiency paper honeycomb composite material special tool and its processing method[C]//Proceeding of the 17th National Conference on Composite Materials. Beijing:The 17th National Conference on Composite Materials. 2012,5. [26] 谢坤,董辉跃,薛辉,等. Nomex纸基蜂窝零件新加工工艺研究[J]. 机械科学与技术. 2011,30(11):1811-1815. XIE Kun,DONG Huiyue,XUE Hui,et al. Study on new machining process of Nomex paper-based honeycomb parts[J]. Mechanical Science and Technology. 2011,30(11):1811-1815. [27] 金成柱. Nomex蜂窝材料高速加工工艺及固持可靠性研究[D]. 杭州:浙江大学,2006. JIN Chengzhu. High-speed machining process and reliability of Nomex honeycomb material[D]. Hangzhou:Zhejiang University,2006. [28] JIN C Z. Study on reliability of new fixture method for nomex honeycomb[J]. Advanced Materials Research. 2011,415-417:3-13. [29] 刘元吉,刘适,姜振喜. 基于TRIZ理论的飞机蜂窝芯零件数控加工固持方法研究[J]. 工具技术. 2018,52(12):93-97. LIU Yuanji,LIU Shi,JIANG Zhenxi. Research of aircraft honeycomb core component clamping method for NC machining based on TRIZ theory[J]. Tool Engineering. 2018,52(12):93-97. [30] 柯映林,金成柱,刘刚. Nomex蜂窝芯高速铣削加工工艺的优化[J]. 中国机械工程,2006(12):1299-1302. KE Yinglin,JIN Chengzhu,LIU Gang. Optimization of high-speed milling process for Nomex honeycomb cores[J]. China Mechanical Engineering,2006(12):1299-1302. [31] YIP-HOI D,GILL D,GAHAN J,et al. Material stiffness and cutting parameters for honeycomb aluminum sandwich panel:A comparison with bulk material[J]. Procedia Manufacturing. 2019,34:385-392. [32] 徐龙,梅颖,刘元,等. Nomex薄壁蜂窝芯型面加工技术[J]. 工具技术,2018,52(12):116-119. XU Long,MEI Ying,LIU Yuan,et al. Nomex thin-walled honeycomb core profile processing technology[J]. Tool Engineering,2018,52(12):116-119. [33] HAN S,KIM H. Experimental study on shape machining characteristics of composite honeycomb core[J]. Journal of the Korean Society of Manufacturing Process Engineers,2014,13(4). [34] 侯小林,祝益军. 蜂窝结构件的数控加工[J]. 航空制造技术,2009(S1):60-63. HOU Xiaolin,ZHU Yijun. CNC machining of honeycomb structural parts[J]. Aerospace Manufacturing Technology,2009(S1):60-63. [35] XIANG C,YUJIE W,CHAO S,et al. Research on high efficiency and low destructive manufacture process of complex structure honeycomb core[J]. IOP Conference Series:Materials Science and Engineering,2019,538(1):12017. [36] 王鹏程,高涛,曹翔. 基于凸台搭接的蜂窝芯零件数控加工工艺技术研究[J]. 制造技术与机床,2021(4):74-78. WANG Pengcheng,GAO Tao,CAO Xiang. Research on NC machining process technology of honeycomb core parts based on false boss connection[J]. Manufacturing Technology & Machine Tool,2021(4):74-78. [37] 高涛,骆金威,林勇,等. 基于超声波机床的蜂窝芯数控加工技术研究[J]. 机械制造,2013,51(1):41-43. GAO Tao,LUO Jinwei,LIN Yong,et al. Research on CNC machining technology of honeycomb cores based on ultrasonic machine tools[J]. Machinery,2013,51(1):41-43. [38] 高军,崔巍. 超声切割技术在复合材料加工领域的应用[J]. 航空制造技术,2008(4):50-52. GAO Jun,CUI Wei. Application of ultrasonic cutting technology in the field of composite materials processing[J]. Aerospace Manufacturing Technology,2008(4):50-52. [39] 康凯. 碳纤维复合材料超声波切割装置设计及系统研究[D]. 杭州:杭州电子科技大学,2019. KANG Kai. Design and System Research of Ultrasonic Cutting Device for Carbon Fiber Composites[D]. Hangzhou:Hangzhou University of Electronic Science and Technology,2019 [40] 赵波. 超声加工技术的研究现状和发展方向简介[J]. 金刚石与磨料磨具工程,2020,40(1):1-4. ZHAO Bo. Research status and development direction of ultrasonic machining technology[J]. Diamond & Abrasives Engineering,2020,40(1):1-4. [41] 马付建. 超声辅助加工系统研发及其在复合材料加工中的应用[D]. 大连:大连理工大学,2013. MA Fujian. Development of ultrasonic-assisted machining system and its application in composite materials processing[D]. Dalian:Dalian University of Technology,2013. [42] 康仁科,马付建,董志刚,等. 难加工材料超声辅助切削加工技术[J]. 航空制造技术,2012(16):44-49. KANG Renke,MA Fujian,DONG Zhigang,et al. Ultrasonic-assisted cutting technology for difficult-to- machine materials[J]. Aerospace Manufacturing Technology,2012(16):44-49. [43] 郑伟帅. 基于STM32的频率自动跟踪与振幅恒定的超声电源的研制[D]. 大连:大连理工大学,2018. ZHENG Weishuai. Development of an ultrasonic power supply with automatic frequency tracking and constant amplitude based on STM32[D]. Dalian University of Technology,2018. [44] SUN J,DONG Z,WANG X,et al. Simulation and experimental study of ultrasonic cutting for aluminum honeycomb by disc cutter[J]. Ultrasonics,2020,103:106102. [45] AHMAD S,ZHANG J,FENG P,et al. Experimental study on rotary ultrasonic machining (RUM) characteristics of Nomex honeycomb composites (NHCs) by circular knife cutting tools[J]. Journal of Manufacturing Processes,2020,58:524-535. [46] 冯柏仁. 圆片刀超声切削铝蜂窝形貌研究[D]. 大连:大连理工大学,2019. FENG Bairen. Study on the morphology of aluminum honeycomb by ultrasonic cutting with disc cutter[D]. Dalian:Dalian University of Technology,2019. [47] 邱宇,赵清泉,袁信满,等. Nomex蜂窝芯超声加工工艺及编程技术研究[J]. 机械研究与应用,2019,32(03):139-143. QIU Yu,ZHAO Qingquan,YUAN Xinman,et al. Study on ultrasonic machining process and programming technology for Nomex honeycomb cores[J]. Mechanical Research & Application,2019,32(03):139-143. [48] 张海超,龚清洪. Nomex蜂窝芯结构零件超声切割与传统数控加工的对比研究[C]//第17届全国复合材料学术会议(复合材料制造技术与设备分论坛)论文集. 中国北京:第17届全国复合材料学术会议. 2012,5. ZHANG Haichao,GONG Qinghong. Comparative study of ultrasonic cutting and conventional CNC machining of Nomex honeycomb core structure parts[C]//Proceeding of the 17th National Conference on Composite Materials. Beijing:17th National Conference on Composite Materials,2012,5. [49] WANG Y,KANG R,DONG Z,et al. A novel method of Blade-Inclined ultrasonic cutting Nomex honeycomb core with straight blade[J]. Journal of Manufacturing Science and Engineering,2021,143(4). [50] 孟倩. 圆片刀超声切削Nomex蜂窝芯表面质量研究[D]. 大连:大连理工大学,2020. MENG Qian. Ultrasonic cutting of Nomex honeycomb core surface quality with a circular blade[D]. Dalian:Dalian University of Technology,2020. [51] 黄秀秀,胡小平,于保华,等. 基于断裂力学的Nomex蜂窝复合材料超声切割机理研究[J]. 机械工程学报,2015,51(23):205-212. HUANG Xiuxiu,HU Xiaoping,YU Baohua,et al. Ultrasonic cutting mechanism of Nomex honeycomb composites based on fracture mechanics[J]. Journal of Mechanical Engineering,2015,51(23):205-212. [52] XIANG D,WU B,YAO Y,et al. Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex® honeycomb-core composites[J]. The International Journal of Advanced Manufacturing Technology,2019,100(5-8):1521-1530. [53] XIANG D,WU B,YAO Y,et al. Ultrasonic vibration assisted cutting of Nomex honeycomb core materials[J]. International Journal of Precision Engineering and Manufacturing,2019,20(1):27-36. [54] DEIBEL K,LAEMMLEIN S,WEGENER K. Model of slice-push cutting forces of stacked thin material[J]. Journal of Materials Processing Technology,2014,214(3):667-672. [55] ATKINS A G,XU X,JERONIMIDIS G. Cutting,by 'pressing and slicing,' of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami[J]. Journal of Materials Science,2004,39(8):2761-2766. [56] 石川宪一,横山恭男,津和秀夫. 高分子材料のナイフ状工具による切断に関する研究[J]. 精密机械,1979,45(11):23-28. ISHIKAWA K,YOKOYAMA Y,TSUWA H. Study on Cutting of Soft Polymers by a Knife-blade[J]. Precision Engineering,1979,45(11):23-28. [57] HU X P,YU B H,LI X Y,et al. Research on cutting force model of triangular blade for ultrasonic assisted cutting honeycomb composites[J]. Procedia CIRP,2017,66:159-163. [58] KANG D,ZOU P,WU H,et al. Study on ultrasonic vibration-assisted cutting of Nomex honeycomb cores[J]. The International Journal of Advanced Manufacturing Technology,2019,104(1-4):979-992. [59] YANG Z,ZHU L,ZHANG G,et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture,2020,156:103594. [60] NI C,ZHU L,LIU C,et al. Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti-6Al-4V[J]. International Journal of Mechanical Sciences,2018,142-143:97-111. [61] YANG Z,ZHU L,NI C,et al. Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics[J]. International Journal of Mechanical Sciences,2019,155:66-82. [62] NATH C,RAHMAN M. Effect of machining parameters in ultrasonic vibration cutting[J]. International Journal of Machine Tools and Manufacture. 2008,48(9):965-974. [63] 王毅丹,王宣平,康仁科,等. 直刃尖刀超声辅助切割Nomex蜂窝芯切削力分析[J]. 机械工程学报,2017,53(19):73-82. WANG Yidan,WANG Xuanping,KANG Renke,et al. Analysis of ultrasonic-assisted cutting force for cutting Nomex honeycomb cores with straight-edge sharp knives[J]. Journal of Mechanical Engineering,2017,53(19):73-82. [64] 黄秀秀,胡小平,于保华. 蜂窝复合材料超声切割力建模及工艺参数选择研究[J]. 机电工程,2015,32(1):32-36. HUANG Xiuxiu,HU Xiaoping,YU Baohua. Study on ultrasonic cutting force modeling and process parameter selection for honeycomb composites[J]. Mechatronics Engineering. 2015,32(1):32-36. [65] 牛景露,朱祥龙,康仁科,等. 圆片刀超声切削蜂窝芯材料试验研究[J]. 金刚石与磨料磨具工程,2017,37(3):62-68. NIU Jinglu,ZHU Xianglong,KANG Renke,et al. Experimental study on ultrasonic cutting of honeycomb core material by circular blade knife[J]. Diamond and Abrasives Engineering,2017,37(3):62-68. [66] 袁信满,郑华林,忻龙飞,等. 基于响应曲面法的Nomex蜂窝芯超声复合铣削力预测模型构建[J]. 制造技术与机床,2017(1):103-108. YUAN Xinman,ZHENG Hualin,XIN Longfei,et al. Construction of Nomex honeycomb core ultrasonic composite milling force prediction model based on response surface method[J]. Manufacturing Technology and Machine Tools,2017(1):103-108. [67] SUN J,KANG R,QIN Y,et al. Simulated and experimental study on the ultrasonic cutting mechanism of aluminum honeycomb by disc cutter[J]. Composite Structures,2021,275:114431. [68] LIU L,MENG P,WANG H,et al. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall[J]. Composites Part B-Engineering,2015,76:122-132. [69] SEEMANN R,KRAUSE D. Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level[J]. Composite Structures,2017,159:702-718. [70] MALEK S,GIBSON L. Effective elastic properties of periodic hexagonal honeycombs[J]. Mechanics of Materials,2015,91:226-240. [71] LIU L,WANG H,GUAN Z. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading[J]. Composite Structures,2015,121:304-314. [72] ROY R,PARK S,KWEON J,et al. Characterization of Nomex honeycomb core constituent material mechanical properties[J]. Composite Structures,2014,117:255-266. [73] GIGLIO M,GILIOLI A,MANES A. Numerical investigation of a three point bending test on sandwich panels with aluminum skins and Nomex™ honeycomb core[J]. Computational Materials Science,2012,56:69-78. [74] HEIMBS S. Virtual testing of sandwich core structures using dynamic finite element simulations[J]. Computational Materials Science,2009,45(2):205-216. [75] AKTAY L,JOHNSON A F,KROEPLIN B. Numerical modelling of honeycomb core crush behaviour[J]. Engineering Fracture Mechanics,2008,75(9):2616-2630. [76] FOO C C,CHAI G B,SEAH L K. Mechanical properties of Nomex material and Nomex honeycomb structure[J]. Composite Structures,2007,80(4):588-594. [77] BUITRAGO B L,SANTIUSTE C,SÁNCHEZ-SÁEZ S,et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures,2010,92(9):2090-2096. [78] MENNA C,ZINNO A,ASPRONE D,et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J]. Composite Structures,2013,106:326-339. [79] ZINNO A,PROTA A,Di MAIO E,et al. Experimental characterization of phenolic-impregnated honeycomb sandwich structures for transportation vehicles[J]. Composite Structures,2011,93(11):2910-2924. [80] AKTAY L,JOHNSON A F,HOLZAPFEL M. Prediction of impact damage on sandwich composite panels[J]. Computational Materials Science,2005,32(3-4):252-260. [81] XIE S,ZHOU H. Analysis and optimisation of parameters influencing the out-of-plane energy absorption of an aluminium honeycomb[J]. Thin-Walled Structures,2015,89:169-177. [82] GIGLIO M,MANES A,GILIOLI A. Investigations on sandwich core properties through an experimental- numerical approach[J]. Composites Part B:Engineering,2012,43(2):361-374. [83] ROY R,NGUYEN K H,PARK Y B,et al. Testing and modeling of Nomex™ honeycomb sandwich Panels with bolt insert[J]. Composites Part B:Engineering,2014,56:762-769. [84] ROY R,KWEON J H,CHOI J H. Meso-scale finite element modeling of NomexTM honeycomb cores[J]. Advanced Composite Materials:International Conference On Advances in Structural Health Management and Composite Structures-ASHMCS 2012,2014,23(1):17-29. [85] ZHANG Y,LIU T,TIZANI W. Experimental and numerical analysis of dynamic compressive response of Nomex honeycombs[J]. Composites Part B:Engineering,2018,148:27-39. [86] RODRIGUEZ-RAMIREZ J D D,CASTANIE B,BOUVET C. Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core:Application to insert sizing[J]. Composite Structures,2018,193:121-139. [87] ASPRONE D,AURICCHIO F,MENNA C,et al. Statistical finite element analysis of the buckling behavior of honeycomb structures[J]. Composite Structures,2013,105:240-255. [88] TAO Y,DUAN S,WEN W,et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs[J]. Composites Part B:Engineering,2017,118:33-40. [89] LIN T,YANG M,HUANG J. Effects of solid distribution on the out-of-plane elastic properties of hexagonal honeycombs[J]. Composite Structures,2013,100:436-442. [90] WANG Z,TIAN H,LU Z,et al. High-speed axial impact of aluminum honeycomb-Experiments and simulations[J]. Composites Part B:Engineering,2014,56:1-8. [91] NGUYEN M Q,JACOMBS S S,THOMSON R S,et al. Simulation of impact on sandwich structures[J]. Composite Structures,2005,67(2):217-227. [92] 黄萌. 基于ABAQUS的芳纶纸蜂窝直刃刀超声切削过程有限元模拟研究[D]. 杭州:杭州电子科技大学,2017. HUANG Meng. Finite element simulation study of ultrasonic cutting process of aramid paper honeycomb straight edge knife based on ABAQUS[D]. Hangzhou:Hangzhou University of Electronic Science and Technology,2017. [93] 李秀渊. 芳纶蜂窝材料超声切削过程仿真和实验研 究[D]. 杭州:杭州电子科技大学,2019. LI Xiuyuan. Simulation and experimental study on ultrasonic cutting process of aramid honeycomb material[D]. Hangzhou:Hangzhou University of Electronic Science and Technology,2019. [94] 王际帆. 纸蜂窝复合材料超声切削刀具设计及切削性能研究[D]. 大连:大连交通大学,2016. WANG Jifan. Design and cutting performance of ultrasonic cutting tools for paper honeycomb composites[D]. Dalian:Dalian Jiaotong University,2016. [95] CAO W,ZHA J,CHEN Y. Cutting force prediction and experiment verification of paper honeycomb materials by ultrasonic Vibration-Assisted machining[J]. Applied Sciences,2020,10(13):4676. [96] JAAFAR M,ATLATI S,MAKICH H,et al. A 3D FE modeling of machining process of Nomex® honeycomb core:Influence of the cell structure behaviour and specific tool geometry[J]. Procedia CIRP,2017,58:505-510. [97] JAAFAR M,MAKICH H,ATLATI S,et al. Experimental and numerical study of machining Nomex honeycomb composite structures[C]. Champs-sur-Marne,France:National Composite Days 2017. 2017 [98] 张迅,董志刚,王毅丹,等. Nomex蜂窝芯直刃尖刀超声切割表面微观形貌特征[J]. 机械工程学报,2017,53(19):90-99. ZHANG Xun,DONG Zhigang,WANG Yidan,et al. Microscopic morphological characteristics of ultrasonically cut surfaces of Nomex honeycomb cores with straight-edge sharp knives[J]. Journal of Mechanical Engineering,2017,53(19):90-99. [99] 朱文秀. Nomex蜂窝材料直刃尖刀超声切割切削力分析[D]. 大连:大连理工大学,2016. ZHU Wenxiu. Analysis of ultrasonic cutting forces of straight-edge pointed knives for Nomex honeycomb materials[D]. Dalian:Dalian University of Technology,2016. [100] SUN D,KANG R,WANG Y,et al. A novel ultrasonic trepanning method for Nomex honeycomb core[J]. Applied Sciences,2021,11(1):354. [101] 康仁科,韩坤,王毅丹,等. 采用半圆弧刀具超声插切Nomex蜂窝芯的新方法[J]. 航空制造技术,2020,63(13):14-22. KANG Renke,HAN Kun,WANG Yidan,et al. A new method for ultrasonic interpolation of Nomex honeycomb cores using semicircular arc tools[J]. Aerospace Manufacturing Technology,2020,63(13):14-22. [102] 孙健淞,董志刚,王毅丹,等. 超声切割铝蜂窝试验研究[J]. 机械工程学报,2017,53(19):128-135. SUN Jiansong,DONG Zhigang,WANG Yidan,et al. Experimental study on ultrasonic cutting of aluminum honeycomb[J]. Journal of Mechanical Engineering,2017,53(19):128-135. [103] HU X P,CHEN S Y,ZHANG Z C. Research on Curved Surface Forming of Nomex Honeycomb Material Based on Ultrasonic NC Cutting[J]. Advanced Materials Research,2012,538-541:1377-1381. [104] 李裕,骆金威,高涛,等. 基于超声波机床加工蜂窝芯的误差分析研究[J]. 制造技术与机床,2013(9):102-105. LI Yu,LUO Jinwei,GAO Tao,et al. Error analysis study of honeycomb core machining based on ultrasonic machine tools[J]. Manufacturing Technology and Machine Tools,2013(9):102-105. [105] 俞浩峰. 蜂窝曲面零件超声辅助加工的六轴数控工艺研究[D]. 杭州:杭州电子科技大学,2020. YU Haofeng. Six-axis CNC process research for ultrasonic-assisted machining of honeycomb surface parts[D]. Hangzhou:Hangzhou University of Electronic Science and Technology,2020. [106] VAKILINEJAD M,OLABI A,GIBARU O,et al. Geometrical error improvement of Aramid honeycomb workpieces in robot-based triangular knife ultrasonic cutting process[J]. The International Journal of Advanced Manufacturing Technology,2020,110(1-2):523-541. [107] LIU E,HU X,YU B. Research and development of ultrasonic CNC cutting path generation system for Nomex composite materials[J]. Advanced Materials Research,2014,941-944:1968-1972. [108] 韩坤. Nomex蜂窝芯纵弯复合振动超声插切刀具及其超声电源的研制与应用[D]. 大连:大连理工大学,2020. HAN Kun. Development and application of Nomex honeycomb core longitudinal bending composite vibration ultrasonic inserting tool and its ultrasonic power source[D]. Dalian:Dalian University of Technology,2020. [109] CUI R,ZHANG J,FENG P,et al. A path planning method for V-Shaped robotic cutting of Nomex honeycomb by straight blade tool[J]. IEEE Access,2020,8:162763-162774. [110] 张永岩,张超,李薇. 超声波铣床基于catia v5复合材料蜂窝件数控编程方法研究[J]. 航空制造技术,2012(9):79-82. ZHANG Yongyan,ZHANG Chao,LI Wei. Ultrasonic milling machine based on CATIA V5 composite honeycomb parts CNC programming method research[J]. Aerospace Manufacturing Technology,2012(9):79-82. [111] 纪华伟,虞文泽,胡小平,等. 刀具负载对蜂窝复合材料超声切割声学系统阻抗特性的影响[J]. 中国机械工程,2016,27(18):2507-2512. JI Huawei,YU Wenze,HU Xiaoping,et al. Effect of tool loading on the impedance characteristics of ultrasonic cutting acoustic system for honeycomb composites[J]. China Mechanical Engineering,2016,27(18):2507-2512. [112] 牛景露. 芳纶蜂窝芯的超声切削系统开发及其切削性能研究[D]. 大连:大连理工大学,2017. NIU Jinglu. Development of ultrasonic cutting system for aramid honeycomb core and its cutting performance[D]. Dalian:Dalian University of Technology,2017. [113] 张云电,肖健雄,方亮,等. 蜂窝材料超声波切割声学系统研究[J]. 中国机械工程,2014,25(23):3132-3136. ZHANG Yundian,XIAO Jianxiong,FANG Liang,et al. Research on ultrasonic cutting acoustic system for honeycomb materials[J]. China Mechanical Engineering,2014,25(23):3132-3136. [114] 吴欣,胡小平,于保华,等. 蜂窝复合材料超声辅助切割工具设计[J]. 中国机械工程,2015,26(6):809-813. WU Xin,HU Xiaoping,YU Baohua,et al. Design of ultrasound-assisted cutting tools for honeycomb composites[J]. China Mechanical Engineering,2015,26(6):809-813. [115] KE M,JIANFU Z,PINGFA F,et al. Design and implementation of a mini ultrasonic cutting system for Nomex honeycomb composites[C]. Islamabad,Pakistan:Proceedings of 2019 16th International Bhurban Conference on Applied Sciences & Technology (IBCAST),2019,148-152. [116] XIA Y,ZHANG J,WU Z,et al. Study on the design of cutting disc in ultrasonic-assisted machining of honeycomb composites[J]. IOP Conference Series. Materials Science and Engineering,2019,611(1):12032. [117] 刘超亮,袁信满,崔爱杰,等. Nomex蜂窝芯超声振动插削刀设计研究[J]. 制造技术与机床,2020(6):49-53. LIU Chaoliang,YUAN Xinman,CUI Aijie,et al. Research on the design of ultrasonic vibration inserting cutter for Nomex honeycomb cores[J]. Manufacturing Technology and Machine Tools,2020(6):49-53. [118] 吴鑫,董志刚,康仁科,等. 直刃尖刀形状对超声辅助切削系统振动性能的影响[J]. 航空制造技术,2016(22):52-57. WU Xin,DONG Zhigang,KANG Renke,et al. Influence of straight-edge tip tool shape on the vibration performance of ultrasonic-assisted cutting system[J]. Aerospace Manufacturing Technology,2016(22):52-57. [119] MA K,ZHANG J,FENG P,et al. Modeling and fitting of an ultrasonic straight-blade cutting system[J]. The International Journal of Advanced Manufacturing Technology,2021,112(3-4):833-843. [120] XIA Y,ZHANG J,WU Z,et al. Study on the design of cutting disc in ultrasonic-assisted machining of honeycomb composites[J]. IOP Conference Series. Materials Science and Engineering,2019,611(1):12032. [121] ZHANG Y D,FANG L,LU Z P,et al. The Study on Circular Tool of Ultrasonic Cutting[J]. Advanced Materials Research,2013,765-767:92-95. [122] 张生芳,庞皓文,马付建,等. 圆盘刀超声切削振动系统的振动频率数值拟合方法研究[J]. 工具技术,2018,52(5):108-113. ZHANG Shengfang,PANG Haowen,MA Fujian,et al. Study on numerical fitting method of vibration frequency for ultrasonic cutting vibration system of circular cutter[J]. Tool Engineering,2018,52(5):108-113. [123] 马付建,王际帆,张生芳,等. 刀具参数对Nomex蜂窝芯超声切削性能影响分析[J]. 中国工程机械学报,2016,14(4):316-322. MA Fujian,WANG Jifan,ZHANG Shengfang,et al. Analysis of the effect of tool parameters on ultrasonic cutting performance of Nomex honeycomb cores[J]. Chinese Journal of Construction Machinery,2016,14(4):316-322. [124] ZHANG Y D,SHEN Y B,LU Z P. Design of an ultrasonic pointed cutter[J]. Applied Mechanics and Materials,2014,494-495:569-572. [125] 纪华伟,邢文慧,胡小平. 蜂窝复合材料构件超声切割圆盘刀对声学系统的影响[J]. 传感器与微系统,2019,38(2):41-44. JI Huawei,XING Wenhui,HU Xiaoping. Effect of ultrasonic cutting disc knife on acoustic system for honeycomb composite components[J]. Sensors and Microsystems,2019,38(2):41-44. [126] ZHANG Y D,MA Z Q. The study of resonant frequency of horn and circular tool of ultrasonic milling system[J]. Applied Mechanics and Materials,2014,628:283-286. [127] 张生芳,王际帆,马付建,等. 刀具参数对超声切削蜂窝芯切削力及温度影响仿真分析[J]. 大连交通大学学报,2017,38(1):57-61. ZHANG Shengfang,WANG Jifan,MA Fujian,et al. Simulation analysis of the effect of tool parameters on ultrasonic cutting honeycomb core cutting force and temperature[J]. Journal of Dalian Jiaotong University,2017,38(1):57-61. [128] VJUGINOVA A A,DURUKAN Y,VJUGINOV S N,et al. Design and Simulation of Ultrasonic Triangular Blades for Honeycomb Structures Cutting[C]. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE,2021:1293-1296. [129] 孙丁一. 超声插切Nomex蜂窝芯试验研究[D]. 大连:大连理工大学,2020. SUN Dingyi. Experimental study on ultrasonic insertion and cutting of Nomex honeycomb cores[D]. Dalian:Dalian University of Technology,2020. [130] AHMAD S,ZHANG J,FENG P,et al. Research on design and FE simulations of novel ultrasonic circular saw blade (UCSB) cutting tools for rotary ultrasonic machining of Nomex honeycomb composites[C]. Islamabad,Pakistan:Proceedings of 2019 16th International Bhurban Conference on Applied Sciences & Technology (IBCAST),2019,113-119. [131] 何畏,黄帅,袁信满,等. Nomex蜂窝复合材料超声切削锯齿圆盘铣刀动力学分析[J]. 工具技术,2017,51(5):37-40. HE Fei,HUANG Shuai,YUAN Xinman,et al. Dynamics analysis of ultrasonic cutting serrated disc milling cutters for Nomex honeycomb composites[J]. Tool Engineering,2017,51(5):37-40. [132] 邱宇,赵清泉,袁信满,等. 基于蜂窝芯圆盘刀切削齿的系统稳定性研究[J]. 机电工程技术,2019,48(9):26-29. QIU Yu,ZHAO Qingquan,YUAN Xinman,et al. Research on System Stability Based on Honeycomb Core Disc Cutter[J]. Mechanical & Electrical Engineering Technology,2019,48(9):26-29. [133] 陈建桥. Nomex蜂窝芯超声精加工圆形铣刀磨破损检测技术研究[D]. 杭州:杭州电子科技大学,2014. CHEN Jianqiao. Nomex honeycomb core ultrasonic finishing round milling cutter grinding breakage detection technology research[D]. Hangzhou University of Electronic Science and Technology,2014. [134] 王志兵. 超声刀具磨损状态识别与寿命预测技术研 究[D]. 杭州:杭州电子科技大学,2020. WANG Zhibing. Research on ultrasonic tool wear state identification and life prediction technology[D]. Hangzhou:Hangzhou University of Electronic Science and Technology,2020. [135] CRENO. Ultrasonic cutting of Nomex honeycomb[EB/OL]. www.creno-industry.com,2021-03-24. [136] BLOSS R. Automatically building or repairing composite fibre structures[J]. Assembly Automation,2007,27(3):202-206. [137] MOREL P G A. Cutting and forming of honeycombs[J]. Jec Composites Magazine,2011(63):102-104. [138] DUKANE. Ultrasonic cutting systems[EB/OL]. www.dukane.com/plastic-welding-products/ultrasonic-cutting-systems,2021-3-24. [139] 科技部. 国产超声切削装备成功应用于我国航空航天领域[EB/OL]. 2021-03-24. www.most.gov.cn. Ministry of Science and Technology. Domestic ultrasonic cutting equipment successfully applied in China's aerospace field[EB/OL]. www.most.gov.cn,2021-3-24. [140] 韩丽轩. 面向Nomex蜂窝芯复合材料超声切割的智能化电源系统研究[D]. 杭州:杭州电子科技大学,2014. HAN Lixuan. Intelligent power supply system for ultrasonic cutting of Nomex honeycomb core composites[D]. Hangzhou University of Electronic Science and Technology,2014. [141] 胡扩. 蜂窝复合材料超声切割主轴关键技术与实验研究[D]. 杭州:杭州电子科技大学,2018. HU Kuo. Key technology and experimental research on ultrasonic cutting spindle for honeycomb composites[D]. Hangzhou:Hangzhou University of Electronic Science and Technology,2018. [142] AHMAD S,ZHANG J,FENG P,et al. Processing technologies for Nomex honeycomb composites (NHCs):A critical review[J]. Composite Structures. 2020,250:112545. [143] 何大亮,赵安安,薛凯,等. 一种芳纶纸蜂窝芯超声波数控铣切定位方法:中国, 202010441332.9[P]. 2020-07-17. HE Daliang,ZHAO An'an,XUE Kai,et al. A positioning method of numerical controlling ultrasonic milling and cutting for aramid paper honeycomb core:China. 202010441332.9[P]. 2020-07-17. [144] 骆金威,高涛,牟文平,等. 面向超声波机床加工芳纶纸蜂窝芯的新型固持方法[J]. 航空制造技术,2014(22):106-108,115. LUO Jinwei, GAO Tao,MU Wenping,et al. Nomex honeycomb core clamping method by ultrasonic machine[J]. Aerospace Manufacturing Technology,2014(22):106-108,115. |
[1] | 秦炎, 康仁科, 王毅丹, 孙健淞, 董志刚. 蜂窝芯构件表面形状精度测量技术综述[J]. 机械工程学报, 2024, 60(14): 1-10. |
[2] | 黄欣, 王成勇, 何宇星, 方戈贤, 杨涛, 姚俊雄, 郑李娟. 异质多元多层印制电路板精密孔机械加工[J]. 机械工程学报, 2023, 59(3): 283-307. |
[3] | 张磊, 许帅康, 陈洁, 李鹏飞, 于世杰, 王超. 列车车体轻量化设计研究进展[J]. 机械工程学报, 2023, 59(24): 177-196. |
[4] | 单忠德, 周征西, 孙正, 黄浩, 刘阳. 航空航天先进复合材料三维预制体成形技术与装备研究[J]. 机械工程学报, 2023, 59(20): 64-79. |
[5] | 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报, 2023, 59(19): 348-374. |
[6] | 苏飞, 欧阳晨恺, 李纯杰, 郑雷, 蔡志华. 平纹编织碳纤维/Kevlar纤维增强混杂复合材料微-宏观切削去除机理研究[J]. 机械工程学报, 2022, 58(21): 331-348. |
[7] | 王振忠, 施晨淳, 张鹏飞, 杨哲, 陈熠, 郭江. 先进光学制造技术最新进展[J]. 机械工程学报, 2021, 57(8): 23-56. |
[8] | 丁峰, 王成勇, 赖子健, 张涛, 朱旭光, 高宽. 锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J]. 机械工程学报, 2021, 57(3): 235-246. |
[9] | 倪陈兵, 朱立达, 宁晋生, 杨志超, 刘长福. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7): 207-216. |
[10] | 聂强, 黄凯, 毕庆贞, 朱利民. 微铣削中考虑刀具跳动的瞬时切厚解析计算方法[J]. 机械工程学报, 2016, 52(3): 169-178. |
[11] | 朱锟鹏, 李科选, 梅涛, 施云高. 微铣削力建模研究进展*[J]. 机械工程学报, 2016, 52(17): 20-34. |
[12] | 陈明君;陈妮;何宁;倪海波;刘战强;李亮. 微铣削加工机理研究新进展[J]. , 2014, 50(5): 161-172. |
[13] | 郭隐彪;杨炜;王振忠;彭云峰;毕果;杨平. 大口径光学元件超精密加工技术与应用[J]. , 2013, 49(19): 171-178. |
[14] | 萨日娜;张树有;裘乐淼. 面向制造装备加工工艺与性能需求转换的质量屋依赖与反馈模型[J]. , 2012, 48(15): 164-172. |
[15] | 罗昌杰;周安亮;刘荣强;邓宗全;李萌. 金属蜂窝异面压缩下平均压缩应力的理论模型[J]. , 2010, 46(18): 52-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||