机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 96-118.doi: 10.3901/JME.2023.20.096
彭艳1,2, 石宝东1,2, 刘才溢1,2, 邢建康1,2
收稿日期:
2023-02-26
修回日期:
2023-05-27
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
彭艳(通信作者),男,1971年出生,博士,教授,博士研究生导师。主要研究方向为轧机稳健控制、轧机系统智能化、金属构件疲劳与延寿。E-mail:pengyan@ysu.edu.cn
基金资助:
PENG Yan1,2, SHI Baodong1,2, LIU Caiyi1,2, XING Jiankang1,2
Received:
2023-02-26
Revised:
2023-05-27
Online:
2023-10-20
Published:
2023-12-08
摘要: 精品板带钢生产涉及装备、工艺和产品质量等多方面,其中,装备为工艺提供平台支撑,工艺优化和装备革新直接决定产品质量提升,而终端用户需求和产品质量的提升再次驱动装备和工艺的再创新,这种螺旋式融合发展推动了板带轧制装备、工艺和产品质量系统集成和协同发展。然而,当前装备-工艺-产品质量之间适配度偏低己成为制约精品板带钢产品质量提升的瓶颈,催生出由传统单一学科向多学科交叉融合联合攻关板带轧制领域关键核心技术难题的新发展趋势。围绕板带轧制理论及轧机系统柔性适配理论技术、轧机装备稳健运行控制、产品形性一体化控制理论技术,总结分析板带轧制装备、工艺、产品质量综合控制的最新进展。在板带轧制理论及轧机系统柔性适配理论技术方面,针对轧机负载辊缝变化以及瞬态突变状态下缺乏柔性适配调控能力的技术难题,讨论当前板带轧机负载辊缝形状控制理论技术,提出板带轧制过程装备-工艺-产品适配理论技术,进一步提升装备对工艺和产品的支撑作用和平台功效。在板带轧机装备稳健运行控制方面,分析板带轧机装备传感测试和系统稳健运行控制理论技术等亟待解决的关键科学问题与技术难题,为轧机高质量稳健运行提供技术支撑。在板带轧制产品形性一体化控制理论技术方面,针对轧制产品形状尺寸、表面质量、组织性能跨尺度协同控制难度大的问题,提出轧辊-轧件综合控制理论技术,为板带轧制形性一体化智能高效协同控制提供理论支撑。最后围绕以装备为基础,工艺为关键,产品质量为目标,对板带轧制综合控制融合发展进行了总结和展望。
中图分类号:
彭艳, 石宝东, 刘才溢, 邢建康. 板带轧制装备-工艺-产品质量综合控制融合发展综述[J]. 机械工程学报, 2023, 59(20): 96-118.
PENG Yan, SHI Baodong, LIU Caiyi, XING Jiankang. Review of the Integrated Development of Strip Rolling Equipment- process-product Quality Control[J]. Journal of Mechanical Engineering, 2023, 59(20): 96-118.
[1] 殷瑞钰. 冶金学的时代命题——打通流程,沟通层次,开新说[J]. 钢铁,2021,56(8):4-9. YIN Ruiyu. Topic of times of metallurgy—Get through process,communicate different levels and open up a new theory[J]. Iron and Steel,2021,56(8):4-9. [2] 康永林. “十三五”中国轧钢技术进步及展望[J]. 钢铁,2021,56(10):1-15. KANG Yonglin. China steel rolling technology progress in the 13th five year plan and prospection[J]. Iron and Steel,2021,56(10):1-15. [3] 王国栋,刘振宇,张殿华,等. 材料科学技术转型发展与钢铁创新基础设施的建设[J]. 钢铁研究学报,2021,33(10):1003-1017. WANG Guodong,LIU Zhenyu,ZHANG Dianhua,et al. Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure[J] Journal of Iron and Steel Research, 2021,33(10):1003-1017. [4] 王涛,黄庆学,申光宪,等. 四辊轧机叼板窜辊问题的解析[J]. 钢铁,2017,52(11):81-86. WANG Tao,HUANG Qingxue,SHEN Guangxian,et al. Analysis on problem of plate biting and roll shifting in four-high rolling mill[J]. Iron and Steel,2017,52(11):81-86. [5] 孙建亮,刘宏民,李琰赟,等. 热连轧机水平振动及其与轧制参数影响关系[J]. 钢铁,2015,50(1):43-49. SUN Jianliang,LIU Hongmin,LI Yanyun,et al. Horizontal vibration of hot rolling mill and its relationship with rolling parameters[J]. Iron and Steel,2015,50(1):43-49. [6] 刘文仲. 中国钢铁工业智能制造现状及思考[J]. 中国冶金,2020,30(6):1-7. LIU Wenzhong. Current situation and thinking of intelligent manufacturing in China’ s iron and steel industry[J]. China Metallurgy,2020,30(6):1-7. [7] 中国钢铁工业协会. 中国钢铁智能制造发展前景展望——钢铁未来梦工厂[J]. 中国钢铁业,2019(9):23-26. China Iron and Steel Industry Association. Prospects for the development of intelligent manufacturing of steel in China-Steel Future Dream Factory[J]. China Steel Industry,2019(9):23-26. [8] LIAN J C. Analysis of profile and shape control in flat rolling[C]//Proceeding of the First International Conference on Steel Rolling. Tokyo,Japan,1980:713-724. [9] 刘宏民. 三维轧制理论及其应用[M]. 北京:科学出版社,1999. LIU Hongmin. Three dimensional rolling theory and its application[M]. Beijing:Science Press,1999. [10] 杜凤山. 三维弹塑性有限元法模拟板带轧制过程[D]. 秦皇岛:燕山大学,1990. DU Fengshan. Simulation of strip rolling process by three-dimensional elastoplastic finite element method[D]. Qinhuangdao:Yanshan University,1990. [11] 刘相华. 刚塑性有限元及其在轧制中的应用[M]. 北京:冶金工业出版社,1994. LIU Xianghua. Rigid-plastic finite element and its application in rolling[M]. Beijing:Metallurgical Industry Press,1994. [12] 王国栋. 板形控制和板形理论[M]. 北京:冶金工业出版社,1986. WANG Guodong. Plate shape control and plate shape theory[M]. Beijing:Metallurgical Industry Press,1986. [13] 彭艳. 基于条元法的HC冷轧机板形预设定控制理论研究及工业应用[D]. 秦皇岛:燕山大学,2000. PENG Yan. Research on presetting control theory and industrial application of HC cold rolling mill based on strip element method[D]. Qinhuangdao:Yanshan University,2000. [14] 陈泽军. 三维弹性接触Taylor级数多极边界元法理论与应用研究[D]. 秦皇岛:燕山大学,2009. CHEN Zejun. Theory and application of three- dimensional elastic contact Taylor series multipolar boundary element method[D]. Qinhuangdao:Yanshan University,2009. [15] 李俊琛,黄旭涛,马国才,等. 基于影响函数法的复杂辊系有载辊缝模型优化[J]. 兰州理工大学学报,2020,46(6):22-27. LI Junchen,HUANG Xutao,MA Guocai,et al. Optimization of complex roller system carrier roll joint model based on influence function method[J]. Journal of Lanzhou University of Technology,2020,46(6):22-27. [16] ALAEI H,SALIMI M. NOURANI A. Online prediction of work roll thermal expansion in a hot rolling process by a neural network[J]. The International Journal of Advanced Manufacturing Technology,2016,85(5-8):1769-1777. [17] 何海楠. 硅钢热轧轧辊磨损和断面精准控制研究[D]. 北京:北京科技大学,2020. HE Hainan. Research on wear and precise cross-section control of silicon steel hot rolling roll[D]. Beijing:University of Science and Technology Beijing,2020. [18] 何安瑞,杨荃,陈先霖,等. LVC工作辊在超宽带钢热轧机的应用[J]. 中国机械工程,2008(7):864-868. HE Anrui,YANG Quan,CHEN Xianlin,et al. Application of LVC work rolls in hot rolling mills for ultra-wide strips[J]. China Mechanical Engineering,2008(7):864-868. [19] CAO J G,CHAI X T,LI Y L,et al. Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills[J]. Journal of Materials Processing Technology,2018,252:432-439. [20] 任新意,王松涛,高慧敏,等. 冷连轧机ESS辊形板形控制性能分析[J]. 钢铁,2018,53(3):50-56. REN Xinyi,WANG Songtao,GAO Huimin,et al. Performance analysis of ESS roll shape control in tandem cold rolling mill[J]. Iron and Steel,2018,53(3):50-56. [21] 曹建国,黄小海,赵秋芳,等. 板带轧机通用变凸度板形控制技术[J]. 中南大学学报(自然科学版),2020,51(10):2772-2781. CAO Jianguo,HUANG Xiaohai,ZHAO Qiufang,et al. Universal variable crown technology for strip profile control in wide strip rolling mills[J]. Journal of Central South University (Science and Technology),2020,51(10):2772-2781. [22] 陈先霖,张杰,张清东,等. 宽带钢热连轧机板形控制系统的开发[J]. 钢铁,2000(7):28-33. CHEN Xianlin,ZHANG Jie,ZHANG Qingdong,et al. Development in profile and flatness control system of hot strip mills[J]. Iron and Steel,2000(7):28-33. [23] 陈先霖. 新一代高技术宽带钢轧机的板形控制[J]. 北京科技大学学报,1997(增刊1):1-5. CHEN Xianlin. New generation of high technology broadband steel mills for plate shape control[J]. Journal of Beijing University of Science and Technology,1997(Suppl.1):1-5. [24] 牛山. 基于提升六辊板带冷轧机板形控制性能的辊系参数匹配研究[D]. 秦皇岛:燕山大学,2017. NIU Shan. Research on roll system parameter matching based on improving the shape control performance of 6HI cold rolling mills for flat products[D]. Qinhuangdao:Yanshan University,2017. [25] LI J,WANG X,YANG Q,et al. Modeling and validation of bending force for 6-high tandem cold rolling mill based on machine learning models[J]. The International Journal of Advanced Manufacturing Technology,2022,123(1):389-405. [26] 王晓晨,杨荃,孙友昭. 六辊冷轧机的弯辊力组合板形控制策略[J]. 北京科技大学学报,2014,36(6):824-829. WANG Xiaochen,YANG Quan,SUN Youzhao. Bending Force combination shape control strategy of six-high cold rolling mill [J]. Journal of Beijing University of Science and Technology,2014,36(6):824-829. [27] CAO J G,LIU S J,ZHANG J,et al. ASR work roll shifting strategy for schedule-free rolling in hot wide strip mills[J]. Journal of Materials Processing Technology,2011,211(11):1768-1775. [28] 孙建亮. 面向板形板厚控制的轧机系统动态建模及仿真研究[D]. 秦皇岛:燕山大学,2010. SUN Jianliang. Dynamic modeling and simulation of rolling mill system for plate thickness control[D]. Qinhuangdao:Yanshan University,2010. [29] 于世果,李宏图. 国外厚板轧机及轧制技术的发展(一)[J]. 轧钢,1999(5):43-46. YU Shiguo,LI Hongtu. The development of overseas heavy plate mills and rolling technologies (1)[J]. Steel Rolling,1999(5):43-46. [30] 韩杰. 中厚板轧制过程平面形状控制理论与策略研究[D]. 沈阳:东北大学,2012. HAN Jie. Research on theory and strategy of PVPC during plate rolling process[D]. Shenyang:Northeastern University,2012. [31] LI T X,LI H J,LI R H,et al. Work roll surface profile design and optimization for hot-core heavy Reduction rolling process[J]. ISIJ International,2019,59(7):1314-1322. [32] 江连运,甄涛,黄金博,等. 厚板同速异径蛇形轧制的轧制力与弯曲曲率计算[J]. 塑性工程学报,2021,28(5):249-256. JIANG Lianyun,ZHEN Tao,HUANG Jinbo,et al. Calculation of rolling force and bending curvature of thick plate snake rolling with same velocity and different roller diameters[J]. Journal of Plasticity Engineering,2021,28(5):249-256. [33] 王玉辉,徐龙飞,郑亚楠,等. 一种DS轧机成套设备及其板形控制的轧制工艺:中国,202210556901.3[P]. 2022-08-23. WANG Yuhui,XU Longfei,ZHENG Yanan,et al. A complete set of DS rolling mill equipment and its rolling process for shape control:China,202210556901.3[P]. 2022-08-23. [34] 焦会立. 冷却液对板形影响的分析[D]. 秦皇岛:燕山大学,2008. JIAO Huili. Analysis of the effect of coolant on plate shape[D]. Qinhuangdao:Yanshan University,2008. [35] 杜凤山,冯岩峰,刘文文,等. 板带精密轧制辊形电磁调控测量技术[J]. 钢铁,2017,52(11):75-80. DU Fengshan,FENG Yanfeng,LIU Wenwen,et al. Measuring technique for roll profile electromagnetic control inprecision plate rolling[J]. Iron and Steel,2017,52(11):75-80. [36] 张清东,王文广,周晓敏,等. DSR宽带钢冷轧机的特殊板形控制性能[J]. 北京科技大学学报,2008,30(1):71-76. ZHANG Qingdong,WANG Wenguang,ZHOU Xiaomin,et al. Flatness control behavior of a DSR mill for wide steel strips[J]. Journal of University of Science and Technology,2008,30(1):71-76. [37] 彭艳,杨彦博,刘才溢,等. 一种基于ESP精轧机组变规格在线换辊的撤辊方法:中国,CN107413856B[P]. 2019-02-01. PENG Yan,YANG Yanbo,LIU Caiyi,et al. A method of removing roll based on ESP finishing Mill with variable specification and on-line roll change:China,CN107413856B[P]. 2019-02-01. [38] 彭艳,刘才溢,杨彦博,等. 短流程ESP精轧机组在线换辊方法:中国,CN107321797B[P]. 2019-06-14. PENG Yan,LIU Caiyi,YANG Yanbo,et al. On-line roll change method for short-flow ESP finishing mill:China,CN107321797B[P]. 2019-06-14. [39] 殷瑞钰,张慧. 新形势下薄板坯连铸连轧技术的进步与发展方向[J]. 钢铁,2011,46(4):1-9. YIN Ruiyu,ZHANG Hui. Progress and development direction on thin slab continuous casting and rolling technology under new situation[J]. Iron and Steel,2011,46(4):1-9. [40] ARVEDI S. Arvedi ESP first thin slab endless casting and rolling results[J]. Ironmaking & Steelmaking,2010(4):271-275. [41] 李宁,马银涛. 东华钢铁DSCCR无头轧制技术研究与应用[J]. 山东冶金,2020,42(6):29-31. LI Ning,MA Yintao. Research and application of DSCCR endless rolling technology in Donghua Iron and Steel[J]. Shandong Metallurgy,2020,42(6):29-31. [42] 李志锋,孙超,张志新,等. 热轧带钢无酸洗还原退火热镀锌技术的发展现状[J]. 河北冶金,2019(9):1-9. LI Zhifeng,SUN Chao,ZHANG Zhixin,et al. Development status of hot-dip galvanizing technology without acid pickling and reduction annealing for rolled strip steel[J]. Hebei Metallurgy,2019(9):1-9. [43] WANG J S,JIANG Z Y,Tieu A K,et al. A flying gauge change model in tandem cold strip mill[J]. Journal of Materials Processing Technology,2008,204:152-162. [44] 葛平,程秉祥,孙一康. 冷连轧机动态变规格过程的张力计算模型[J]. 北京科技大学学报,2002(6):661-663. GE Ping,CHENG Bingxiang,SUN Yikang. Tension calculation model for dynamic gauge change process of tandem cold mill[J]. Journal of Beijing University of Science and Technology,2002(6):661-663. [45] 王少飞,齐海峰,窦爱民. 2230 mm冷连轧机变规格断带分析[J]. 轧钢,2016,33(6):92-95. WANG Shaofei,QI Haifeng,DOU Aimin. Analysis on the broken strip of 2230 mm tandem cold mill[J]. Steel Rolling,2016,33(6):92-95. [46] 李洪翠,唐荻,宋勇. 半无头热连轧动态变规格过程轧制规程优化[J]. 北京科技大学学报,2006,28(1):78-83. LI Hongcui,TANG Di,SONG Yong. Optimization of rolling schedule in dynamic gauge change process of semi-endless hot strip mill[J]. Journal of Beijing University of Science and Technology,2006,28(1):78-83. [47] 彭艳,杨彦博,邢建康,等. 一种实现ESP精轧机组在线换辊的逆流换辊方法:中国CN106269888B[P]. 2018-04-06. PENG Yan,YANG Yanbo,XING Jiankang,et al. A counter-current roll change method to realize online roll change of ESP finishing mill:China,CN106269888B[P]. 2018-04-06. [48] 彭艳,杨彦博,张敏,等. ESP精轧机组逆流在线换辊与动态变规程同时进行的方法:中国,CN109692874B[P]. 2020-03-03. PENG Yan,YANG Yanbo,ZHANG Min,et al. The method of simultaneous countercurrent online roll change and dynamic change schedule for ESP finishing mill:China,CN109692874B[P]. 2020-03-03. [49] 唐武军. 1700mm 5机架冷连轧机“甩机架”轧制策略及应用[J]. 电气传动,2012,42(3):48-51,56. TANG Wujun. Rolling strategy and application of “stand swing” for 1700mm 5-stand tandem cold mill[J]. Electric Drive,2012,42(3):48-51,56. [50] 彭艳,张敏,杨彦博,等. 一种基于ESP精轧机组撤辊的动态变规程方法:中国,CN109351780B[P]. 2019-09-06. PENG Yan,ZHANG Min,YANG Yanbo,et al. A method of dynamic changing schedule for roll withdrawal of finishing mill based on ESP:China,CN109351780B[P]. 2019-09-06. [51] CUI Jinxing,PENG Yan,WANG Jin,et al. Study on work roll vertical vibration under periodic spalling of the oxide film[J]. Tribology Transactions,2022,65(5):827-838. [52] 张明,彭艳,孙建亮,等. 2160mm热连轧机组F2精轧机振动机理及测试[J]. 钢铁,2016,51(12):103-111. ZHANG Ming,PENG Yan,SUN Jianliang,et al. Test of vibration on F2 of 2160 mm hot strip mill[J]. Iron and Steel,2016,51(12):103-111. [53] 彭艳. 冶金轧制设备技术数字化智能化发展综述[J]. 燕山大学学报,2020,44(3):218-237. PENG Yan. Review on development of digital and intelligent metallurgical rolling equipment technology[J]. Journal of Yanshan University,2020,44(3):218-237. [54] 彭艳,邢建康,孙建亮,等. 一种实时获取轧机轴承座与牌坊之间间隙的方法:ZL201811579372.9[P]. 2019-04-19. PENG Yan,XING Jiankang,SUN Jianliang,et al. A method for obtaining the gap between bearing block and mill housing in real time:ZL201811579372.9[P]. 2019-04-19. [55] 邢建康,彭艳,孙建亮,等. 实时获取轧机牌坊与轴承座间隙信息的检测元件主体结构:中国,ZL201910866902.6[P]. 2020-01-03. XING Jiankang,PENG Yan,SUN Jianliang,et al. The main structure of the detecting element of obtain the gap information of bearing block and mill housing in real time:China,ZL201910866902.6[P]. 2020-01-03. [56] 邢建康,彭艳,孙建亮. 一种轧机轴承座间隙在线检测装置及检测方法:中国,ZL202110763480.7[P]. 2022-07-19. XING Jiankang,PENG Yan,SUN Jianliang. An online detection device and detection method for rolling mill bearing seat clearance:China,ZL202110763480.7[P]. 2022-07-19. [57] 彭艳,邢建康,孙建亮,等. 一种实时获取负载辊缝信息的智能轧机:中国,ZL201711428879.X[P]. 2018-05-29. PENG Yan,XING Jiankang,SUN Jianliang,et al. An intelligent rolling mill for real-time acquirement of roll gap information:China,ZL201711428879.X[P]. 2018-05-29. [58] 彭艳,邢建康,孙建亮,等. 测量支撑辊外轮廓实时获取板带轧机负载辊缝信息的方法:中国,ZL201711401259.7[P]. 2018-06-05. PENG Yan,XING Jiangkang,SUN Jianliang,et al. A method for measuring the outer profile of support roll to obtain the information of load gap of strip mill in real time:China,ZL201711401259.7[P]. 2018-06-05. [59] 杨光辉,李洪波,张杰,等. 宽带钢热连轧机的板形检测[J]. 金属世界,2012(2):26-32. YANG Guanghui,LI Hongbo,ZHANG Jie,et al. Shape detection of wide strip for continuous hot rolling mill[J]. Metal World,2012(2):26-32. [60] 于丙强,杨利坡,孙建亮. 冷轧带钢板形检测辊研究现状[J]. 轧钢,2011,28(2):44-46. YU Bingqiang,YANG Lipo,SUN Jianliang. Research status of shape detecting roller of cold rolled strip[J]. Steel Rolling,2011,28(2):44-46. [61] 李明,彭艳. 板带轧机系统自动控制[M]. 秦皇岛:燕山大学出版社,2015. LI Ming,PENG Yan. Strip mill system automatic control[M]. Qinhuangdao:Yanshan University Press,2015. [62] 宋明明,刘宏民,徐辉. 非方板形控制系统解耦及内模控制与应用[J]. 钢铁,2023,58(5):92-103. SONG Mingming,LIU Hongmin,XU Hui,et al. Decoupling and internal model control of non-square flatness control system and their applications[J]. Iron and Steel,2023,58(5):92-103. [63] 张明. 热轧板带轧机系统动力学建模及动特性研究[D]. 秦皇岛:燕山大学,2017. ZHANG Ming. Research on dynamic modeling and dynamic characteristics of hot strip rolling mill[D]. Qinhuangdao:Yanshan University,2017. [64] LU X,SUN J,LI G,et al. Dynamic analysis of vibration stability in tandem cold rolling mill[J]. Journal of Materials Processing Technology,2019,272:47-57. [65] 崔金星. 热连轧机辊系与板带动态行为分析及动力学建模[D]. 秦皇岛:燕山大学,2022. CUI Jinxing. Dynamic behavior analysis and dynamic modeling of roll system and strip of hot tandem mill[D]. Qinhuangdao:Yanshan University,2022. [66] 刘晓潺,臧勇,郜志英,等. 多方向耦合振动连轧机再生颤振建模及应用[J]. 中南大学学报(自然科学版),2017,48(3):635-643. LIU Xiaochan,ZANG Yong,GAO Zhiying,et al. Multidirectional regenerative chatter model of tandem rolling mills and its application[J]. Journal of Central South University (Science and Technology),2017,48(3):635-643. [67] CUI J X,PENG Y,WANG J. Instability of roll nonlinear system with structural clearance in rolling process[J]. Journal of Iron and Steel Research International,2022,30(1):112-125. [68] 黄金磊. 非对称因素下热轧过程振动特性及稳定域研究[D]. 北京:北京科技大学,2021. HUANG Jinlei. Research on vibration characteristics and stability region in hot rolling process under asymmetric factors[D]. Beijing:University of Science and Technology Beijing,2021. [69] 闫晓强. 热连轧机机电液耦合振动控制[J]. 机械工程学报,2021,47(17):61-65. YAN Xiaoqiang. Machinery-electric-hydraulic coupling vibration control of hot continuous rolling mills. Journal of Mechanical Engineering,2021,47(17):61-65. [70] 张阳. 基于辊系刚柔耦合特性的板带轧机系统动力学建模研究[D]. 秦皇岛:燕山大学,2016. ZHANG Yang. Dynamic modeling research of rolling mill system based on the roll system’s rigid and flexible coupling property[D]. Qinhuangdao:Yanshan University,2016. [71] ZHANG Y,PENG Y,SUN J L,et al. Roll system and stock’smulti-parameter coupling dynamic modeling based on the shape control of steel strip[J]. Chinese Journal of Mechanical Engineering,2017,30(3):614-624. [72] 彭艳,孙建亮,张阳,等,板带轧机稳定运行动力学模型体系及其工业应用[M]. 北京:机械工业出版社,2018. PENG Yan,SUN Jianliang,ZHANG Yang,et al. Dynamic model system of stable operation of the strip mill and industrial application[M]. Beijing:China Machine Press,2018. [73] SUN J L,PENG Y,LIU H M,et al. Vertical vibration of moving strip in rolling process based on beam theory[J]. Chinese Journal of Mechanical Engineering,2009,22(5):680-687. [74] 高亚南,彭艳,孙建亮,等. 1580热连轧机F2精轧机振动综合测试与分析[J]. 钢铁,2013,48(1):52-58. GAO Yanan,PENG Yan,SUN Jianliang,et al. Vibration comprehensive test and analysis on finisher 2 of 1580 hot strip mill[J]. Journal of Iron and Steel Research International,2013,48(1):52-58. [75] 刘晓潺. 冷连轧过程自激振动建模及失稳机理研究[D]. 北京:北京科技大学,2018. LIU Xiaochan. Modeling and instability mechanism of self-excited vibration during continuous cold rolling process[D]. Beijing:University of Science and Technology Beijing,2018. [76] Peng Y,Cui J X,Sun J L,et al. Torsional vibration for rolling mill with the drive system shaft axis deviations[J]. Arabian Journal for Science and Engineering,2021,46(12):12165-12177. [77] Zhang M,Peng Y,Sun J L,et al. Dynamics of rolling mill drive system considering arc tooth gear dynamic characteristics[J]. Journal of Iron and Steel Research International,2019,26(10):953-961. [78] Peng Y,Zhang M,Sun J L,et al. Experimental and numerical investigation on the roll system swing vibration characteristics of a hot rolling mill[J]. ISIJ International,2017,57(9):1567-1576. [79] Wang X,Yan X. Active vibration suppression for rolling mills vibration based on extended state observer and parameter identification[J]. Journal of Low Frequency Noise Vibration and Active Control,2019,39(2):1-16. [80] 闫晓强. 热连轧机多态耦合振动控制[M]. 北京:冶金工业出版社,2021 YAN Xiaoqiang. Multi-state coupling vibration control of hot strip mill[M]. Beijing:Metallurgical Industry Press,2021. [81] 曾令强. 轧机耦合振动动力学建模及稳定性分析[D]. 北京:北京科技大学,2016. ZENG Lingqiang. Dynamic modeling and stability analysis of rolling mill coupling vibration[D]. Beijing:University of Science and Technology Beijing,2016. [82] 王晓龙. 轧机动态设计研究[D]. 秦皇岛:燕山大学,2021. WANG Xiaolong. Study on dynamic design of rolling mill[D]. Qinhuangdao:Yanshan University,2021. [83] ZHANG Y,LIN R,ZHANG H,et al. Vibration prediction and analysis of strip rolling mill based on XGBoost and Bayesian optimization[J]. Complex & Intelligent Systems,2023,9(1):133-145. [84] 崔金星,邓烁,彭艳,等. 工业数据驱动的轧机振动预测和工艺优化[J]. 振动.测试与诊断,2022,42(1):110-116,198. CUI Jinxing,DENG Shuo,PENG Yan,et al. Rolling mill vibration prediction and process optimization driven by industrial data[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(1):110-116,198. [85] 曹建国,宋纯宁,王雷雷,等. 新一代高技术轧机电工钢矩形断面板形控制创新研究[C]//第十三届中国钢铁年会论文集——4. 轧制与热处理. 冶金工业出版社,2022:11. CAO Jianguo,SONG Chunning,WANG Leilei,et al. Innovative research on control of rectangular section panel shape of electrical steel in new generation high technology mills[C]//Proceedings of the 13th Annual China Steel Conference:4. Rolling and Heat Treatment. Metallurgical Industry Press,2022:11. [86] 彭艳,牛山. 板带轧机板形控制性能评价方法综述[J]. 机械工程学报,2017,53(6):26-44. PENG Yan,NIU Shan. Review on assessment methods for shape control performance of strip rolling mills[J]. Journal of Mechanical Engineering,2017,53(6):26-44. [87] ZENG W,WANG J,ZHANG Y,et al. DDPG-based continuous thickness and tension coupling control for the unsteady cold rolling process[J]. The International Journal of Advanced Manufacturing Technology,2022,120(11):7277-7292. [88] WANG F,ZHOU C,WANG J,et al. Adaptive fuzzy output feedback controller design for a HAGC system with input saturation and output error constraints[J]. Journal of the Franklin Institute,2022,359(5):2030-2057. [89] NGUYEN M H,DAO H V,AHN K K. Adaptive robust position control of electro-hydraulic servo systems with large uncertainties and disturbances[J]. Applied Sciences,2022,12(2):794. [90] 宋明明,王东城,张帅,等. 基于循环神经网络的板形模式识别模型[J]. 钢铁,2018,53(11):56-62. SONG Mingming,WANG Dongcheng,ZHANG Shuai,et al. Flatness pattern recognition model based on recurrent neural network[J]. Iron & Steel,2018,53(11):56-62. [91] WANG D C,LIU H M,LIU J. Research and development trend of shape control for cold rolling strip[J]. Chinese Journal of Mechanical Engineering,2017,30(5):1248-1261. [92] 何安瑞. 热轧宽带钢板形控制技术的现状及未来发展[J]. 轧钢,2022,39(3):1-10. HE Anrui. Present situation and future development of profile and flatness control technologies of hot rolled wide strip[J]. Steel Rolling,2022,39(3):1-10. [93] 丁敬国,刘方路,杜昊展,等. 基于多源数据和多模型融合的板形CPS系统研究与应用[J]. 轧钢,2022,39(6):75-83. DING Jingguo,LIU Fanglu,DU Haozhan,et al. Research and application of flatness CPS system based on multi-source data and multi-model fusion[J]. Steel Rolling,2022,39(6):75-83. [94] 曹建国,张杰,陈先霖,等. 热轧带钢板形板厚综合控制系统的耦合关系[J]. 北京科技大学学报,2000(6):551-554. CAO Jianguo,ZHANG Jie,CHEN Xianlin,et al. Coupling relationship of integrated control system for shaped plate thickness of hot rolled strip steel[J]. Journal of Beijing University of Science and Technology,2000(6):551-554. [95] 张瑞成,王建超. 改进的板形平坦度板厚模型及其自抗扰解耦[J]. 计算机科学,2013,40(增刊2):392-394,420. ZHANG Ruicheng,WANG Jianchao. Improved model of plate glancing flatness and thickness and its active disturbance rejection decoupling[J]. Computer Science,2013,40(Suppl.2):392-394,420. [96] 彭鹏,杨荃. 冷连轧机板形板厚综合解耦控制系统[J]. 钢铁,2007(8):52-55. PENG Peng,YANG Quan. Shape and gauge complex decoupling control system for tandem cold mill[J]. Iron and Steel,2007(8):52-55. [97] 陈志旺,杨景明,王洪瑞. 冷连轧机板形板厚解耦设定补偿研究[J]. 冶金设备,2005(3):11-15. CHEN Zhiwang,YANG Jingming,WANG Hongrui. Study of compensating of setting on decoupling strips flatness and gauge in tandem cold mill[J]. Metallurgical Equipment,2005(3):11-15. [98] 孙文权,邵健,何安瑞,等. 冷连轧板形板厚耦合关系及其解耦设计[J]. 钢铁,2012,47(6):46-50. SUN Wenquan,SHAO Jian,HE Anrui,et al. Coupling relationship between shape and gauge and research of decoupling design for tandem cold mill[J]. Iron and Steel,2012,47(6):46-50. [99] LI X,FANG Y,LIU L. Decoupling predictive control of strip flatness and thickness of tandem cold rolling mills based on convolutional neural network[J]. IEEE Access,2020(8):3656-3667. [100] 张清东,张勃洋,李瑞,等. 钢板微观表面质量控制理论与技术研究进展[J]. 机械工程学报,2016,52(10):32-45. ZHANG Qingdong,ZHANG Boyang,LI Rui,et al. Advances in theory and technology for microscopic surface quality control of steel strip[J]. Journal of Mechanical Engineering,2016,52(10):32-45. [101] Han H,Zhou T,Wang W,et al. Effect of rolling reduction and temperature on the oxide scale of hot rolled mild steel strip[J]. Materials Research,2019,22(5):e20190083. [102] NIOI M,CELOTTO S,PINNA C,et al. Surface defect evolution in hot rolling of high-Si electrical steels[J]. Journal of Materials Processing Technology,2017,249:302-312. [103] BI W,JIN X,WEI X. Formation of a dark streaky edge defect on galvannealed ultra-high strength steel[J]. Surface and Coatings Technology,2022,433:128162. [104] FANG X,LUO Q,ZHOU B,et al. Research progress of automated visual surface defect detection for industrial metal planar materials[J]. Sensors,2020,20(18):5136. [105] ZHANG C,CUI J,LIU W. Multilayer feature extraction of agcn on surface defect detection of steel plates[J]. Computational Intelligence and Neuroscience,2022:2549683. [106] ZHANG Y,LIU X,GUO J,et al. Surface defect detection of strip-steel based on an improved PP-YOLOE-M detection network[J]. Electronics,2022,11(16):2603. [107] 孙建亮,孙孟乾,郭贺松,等. 热轧带材多缺陷和单缺陷表面质量综合预报[J]. 钢铁,2021,56(1):51-58. SUN Jianliang,SUN Mengqian,GUO Hesong,et al. Comprehensive prediction of surface quality of hot-rolled strip with multiple and single defects[J]. Iron & Steel,2021,56(1):51-58. [108] SUN J L,SUN M Q,GUO H S,et al. Research on edge surface warping defect diagnosis based on fusion dimension reduction layer dbn and contribution plot method[J]. Journal of Mechanics,2020,36(6):889-899. [109] 李研,李铁军,滕华湘,等.热镀锌汽车板波纹度的控制技术[J]. 金属热处理,2019,44(4):207-210. LI Yan,LI Tiejun,TENG Huaxiang,et al. Control technology of waviness on galvanized auto sheet[J]. Heat Treatment of Metals,2019,44(4):207-210. [110] DICK K,LENARD J G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips[J]. Journal of Materials Processing Technology,2005,168(1):16-24. [111] 张清东,张勃洋,马磊,等. 高强度带钢表面粗糙度轧制转印规律及预测模型[J]. 工程科学学报,2016,38(1):118-127. ZHANG Qingdong,ZHANG Boyang,MA Lei,et al. Surface roughness rolling-transfer regularity and prediction model of high strength steel strips[J]. Chinese Journal of Engineering,2016,38(1):118-127. [112] LI R,ZHANG Q,ZHANG X,et al. Control method for steel strip roughness in Two-stand temper mill rolling[J]. Chinese Journal of Mechanical Engineering,2015,28(3):573-579. [113] LIU C Y,MAPELLI C,PENG Y,et al. Dynamic recrystallization behavior of low-carbon steel during the flexible rolling process:modeling and characterization[J]. Steel Research International,2022,93(4):2100490. [114] LIU C Y,PENG Y,BARELLA S,et al. Characterization of dynamic recrystallization behavior of low carbon steel under flexible rolling process[J]. Materials Today Communications,2021,29:102777. [115] CHEN M S,ZOU Z H,LIN Y C,et al. Hot deformation behaviors of a solution-treated Ni-based superalloy under constant and changed strain rates[J]. Vacuum,2018,155:531-538. [116] LIU C Y,BARELLA S,PENG Y,et al. Dynamic recrystallization behavior under steady and transient mutation deformation state[J]. Materials Science and Engineering:A,2022,843:143138. [117] LIU C Y,BARELLA S,PENG Y,et al. Modeling and characterization of dynamic recrystallization under variable deformation states[J]. International Journal of Mechanical Sciences,2023,238:107838. [118] 赵明杰,黄亮,李昌民,等. 300M钢的热变形行为及热锻成形工艺研究现状[J]. 精密成形工程,2020,12(6):16-27. ZHAO Mingjie,HUANG Liang,LI Changmin,et al. Research status of the hot deformation behaviors and hot forging process of 300m steel[J]. Journal of Netshape Forming Engineering,2020,12(6):16-27. [119] 蔺永诚,陈小敏,陈明松. 镍基合金的热变形行为及智能热加工技术研究进展[J]. 精密成形工程,2021,13(1):1-18. LIN Yongcheng,CHEN Xiaomin,CHEN Mingsong. Recent development of high-temperature deformation behavior and intelligent processing of Ni-based superalloy[J]. Journal of Netshape Forming Engineering,2021,13(1):1-18. [120] 刘才溢. 无头轧制在线换辊板带再结晶行为研究[D]. 秦皇岛:燕山大学,2022. LIU Caiyi. Study on strip recrystallization behavior of inline roll change for the endless rolling process[D]. Qinhuangdao:Yanshan University,2022. [121] PENG Y,LIANG S C,LIU C Y,et al. Dynamic recrystallization behavior under inhomogeneous thermomechanical deformation state[J]. Steel Research International,2022,94(3):2200574. [122] PENG Y,GUO S,LIU C Y,et al. Dynamic recrystallization behavior of low-carbon steel during hot rolling process:Modeling and simulation[J]. Journal of Materials Research and Technology,2022,20:1266-1290. [123] 严洪凯,杜素周,张清东. CVC工作辊磨损和热凸度对轧机板形控制性能的影响[J]. 冶金设备,2000(3):1-4. YAN Hongkai,DU Suzhou,ZHANG Qingdong. Influence of CVC work roll wear and thermal crown on strip shape control performance of rolling mill[J]. Metallurgical Equipment,2000(3):1-4. [124] 王文广,徐芳,李兴波,等. 热连轧高速钢轧辊对产品表面质量和板形控制的影响[J]. 中国冶金,2022,32(2):97-101. WANG Wenguang,XU Fang,LI Xingbo,et al. Influence of hot continuous rolling high speed steel roll on product surface quality and shape control[J]. China Metallurgy,2022,32(2):97-101. [125] 李伯群,范璇,李伟红,等. 板形设定模型参数优化与控制技术应用[J]. 钢铁,2019,54(2):41-47. LI Boqun,FAN Xuan,LI Weihong,et al. Parameter optimization and control technology application of shape setting model[J]. Iron and Steel,2019,54(2):41-47. [126] Ding J,HE Y,Song M,et al. Roll crown control capacity of sextic CVC work roll curves in plate rolling process[J]. The International Journal of Advanced Manufacturing Technology,2021,113(1):87-97. [127] 李维刚. 热轧轧辊磨损模型研究及轧辊横移影响分析[J]. 武汉科技大学学报,2013,36(2):98-103. LI Weigang. Roll wear model and effect of work roll shift in hot strip mill[J]. Journal of Wuhan University of Science and Technology,2013,36(2):98-103. [128] 邵健,何安瑞,杨荃,等. 热轧工作辊变行程窜辊策略[J]. 北京科技大学学报,2011,33(1):93-97. Shao Jian,HE Anrui,Yang Quan,et al. Varying shifting stroke strategy of work rolls in hot rolling[J]. Journal of University of Science and Technology Beijing,2011,33(1):93-97. [129] 毛宇成,刘施峰,范海洋,等. 高纯钽交叉轧制过程中微观结构和织构梯度的演变[J]. 电子显微学报,2017,36(1):7-13. MAO Yucheng,LIU Shifeng,FAN Haiyang,et al. Evolution of microstructure and texture gradient during cross rolling of high-purity tantalum[J]. Journal of Electronic Microscopy,2017,36(1):7-13. [130] HUH M Y,CHO S Y,ENGLER O. Randomization of the annealing texture in aluminum 5182 sheet by cross-rolling[J]. Materials Science and Engineering:A,2001,315:35-46. [131] WRONSKI S,WROBEL M,BACZMANSKI A,et al. Effects of cross-rolling on residual stress,texture and plastic anisotropy in fcc and bcc metals[J]. Materials Characterization,2013,77:116-126. [132] GURAO N P,SETHURAMAN S,SUWAS S. Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel[J]. Materials Science and Engineering:A,2011,528:7739-50. [133] LI S,NAN Q,JIE L,et al. Microstructure,texture and mechanical properties of AA1060 aluminum plate processed by snake rolling[J]. Materials & Design,2016,90:1010-1017. [134] YANG J,LI S,JIE L,et al. Finite element analysis of bending behavior and strain heterogeneity in snake rolling of AA7050 plates using a hyperbolic sine-type constitutive law[J]. Journal of Materials Processing Technology,2017,240:274-283. [135] ZHANG T,WU Y X,GONG H,et al. Analysis of strain variation in cross shear zone of plate during snake hot rolling[J]. Journal of Central South University of Technology,2017,24(2):7. [136] ZHANG T,WU Y X,GONG H,et al. Analysis of temperature asymmetry of aluminum alloy thick plate during snake hot rolling[J]. The International Journal of Advanced Manufacturing Technology,2016,87(1/4):941-948. |
[1] | 秦光林, 崔长彩, 尹方辰, 黄辉. 面向复杂立体石雕的机器人面扫描视点规划[J]. 机械工程学报, 2024, 60(8): 22-33. |
[2] | 赵希坤, 李聪波, 杨勇, 吕岩, 姜书艳. 数据-机理混合驱动下考虑刀具柔性的柔性加工工艺参数能效优化方法[J]. 机械工程学报, 2024, 60(7): 236-248. |
[3] | 郭江, 潘博, 连佳乐, 杨哲, 刘欢, 高菲, 康仁科. 双面研磨技术研究现状与发展趋势[J]. 机械工程学报, 2024, 60(7): 266-288. |
[4] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[5] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[6] | 张越, 卢岩, 彭锐涛, 朱琳伟, 雷贝, 蒋家传. 轻量化材料新型连接工艺与应用现状[J]. 机械工程学报, 2024, 60(4): 259-283. |
[7] | 刘松, 李俊辉, 刘云飞, 计江, 谢维维, 窦锋, 刘江林, 柳宇. 特种合金极薄带轧制工艺与技术装备的研制[J]. 机械工程学报, 2024, 60(4): 357-368. |
[8] | 袁菘, 郭晓光, 金洙吉, 康仁科, 郭东明. 金刚石高效超低损伤加工机理与工艺研究现状[J]. 机械工程学报, 2024, 60(3): 337-353. |
[9] | 马传震, 刘赫男, 陈明君, 田金川, 周子涵, 孙建刚, 秦彪. 半球谐振子关键性能及制造工艺研究新进展[J]. 机械工程学报, 2024, 60(3): 354-372. |
[10] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[11] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[12] | 黄浩, 单忠德, 张丽娇, 孙正, 郭子桐, 刘检华, 金鹏. 异形截面复合材料构件成形及力学性能预测方法研究[J]. 机械工程学报, 2024, 60(2): 107-118. |
[13] | 严彤彤, 王冬, 彭志科, 雷亚国. 基于谱幅融合广义健康指数的可解释装备退化评估优化模型研究进展[J]. 机械工程学报, 2024, 60(18): 1-16. |
[14] | 万炜强, 韩光超, 王新云, 吕佩, 刘富初, 胡济涛, 柏伟, 徐林红. 超声辅助微塑性成形工艺研究进展[J]. 机械工程学报, 2024, 60(18): 89-115. |
[15] | 田波, 娄军强, 沈家旭, 柳丽, 陈特欢, 李国平, 魏燕定. 可用于微创手术的毫米级微小并联机器人的设计、制造及实现[J]. 机械工程学报, 2024, 60(17): 147-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||