• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (6): 32-43.doi: 10.3901/JME.2024.06.032

• 特邀专栏:数据-知识混合驱动的智能制造系统 • 上一篇    下一篇

扫码分享

面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究

张超1,2, 周光辉1,2, 李晶晶1, 魏智博1, 秦天宇1   

  1. 1. 西安交通大学机械工程学院 西安 710049;
    2. 西安交通大学机械制造系统工程国家重点实验室 西安 710054
  • 收稿日期:2023-09-10 修回日期:2024-01-21 出版日期:2024-03-20 发布日期:2024-06-07
  • 通讯作者: 周光辉,男,1972年出生,博士,教授,博士研究生导师。主要研究方向为智能制造与产品服务系统技术、智能车间数字孪生建模与运控、离散车间高效低碳运行理论与方法。E-mail:ghzhou@mail.xjtu.edu.cn
  • 作者简介:张超,男,1992年出生,博士,助理教授。主要研究方向为车间智能制造技术及系统、工业数字孪生、决策支持系统、深度学习理论与应用。E-mail:superzc@xjtu.edu.cn;李晶晶:女,1990年出生,博士研究生。主要研究方向为数字孪生驱动的工艺智能决策。E-mail:ljj1588@stu.xjtu.edu.cn;魏智博:男,1994年出生,主要研究方向为数控铣削加工过程数字孪生建模与优化控制。E-mail:weizhibo122@stu.xjtu.edu.cn;秦天宇:男,1997年出生,主要研究方向为制造工艺知识智能感知与主动推荐。E-mail:qty997867@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52105530, 51975463)、中国博士后创新人才支持计划(BX2021244)、陕西省高校科协青年人才托举计划(20210409)和中国博士后科学基金(2021M692556)资助项目。

Research on the Construction and Application of Digital Twin Process Model for Intelligent Process Planning of Aviation Complex Parts

ZHANG Chao1,2, ZHOU Guanghui1,2, LI Jingjing1, WEI Zhibo1, QIN Tianyu1   

  1. 1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049;
    2. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054
  • Received:2023-09-10 Revised:2024-01-21 Online:2024-03-20 Published:2024-06-07

摘要: 针对航空制造企业以人工经验为主的试错型工艺规划方式及工艺设计与加工过程缺乏协同导致的航空复杂零件工艺方案设置不合理、加工过程调整不及时、几何精度与物理性能指标调控难等问题,通过引入数字孪生技术,构建面向航空复杂零件智能工艺规划的新型孪生工艺模型及其参考框架。据此,从实测数据、质量信息和工艺知识融合的角度,提出孪生工艺模型数据空间、虚拟空间和知识空间的构建方法,明晰加工过程几何误差与物理性能指标使能的孪生工艺模型多维空间协同演进机制,实现工艺设计与加工过程的联动优化。进一步以航空薄壁件为例,实现孪生工艺模型的原型开发,并探索孪生工艺模型的典型应用场景,为航空制造企业革新工艺规划方式、实现工艺设计与加工过程的联动优化提供支撑。

关键词: 数字孪生, 智能工艺规划, 孪生工艺模型, 质量调控, 航空复杂零件, 智能决策

Abstract: Currently, process planning of complex aviation parts still depends on manual experiences and lacks the coordination between process design and machining. The above issues case the problems like unreliable setting of process plans, un-timely responsive adjustment of machining process, and difficult to control the geometric accuracy and physical performance indicators of complex aviation parts. To bridge the gap, the digital twin is introduced into process planning and a novel reference framework of digital twin process model (DTPM) is proposed. Accordingly, by fusing the on-site data, quality information and process knowledge, the construction methods of data space, virtual space, and knowledge space of DTPM are proposed. Then, the co-evolution mechanism of multiple spaces of DTPM driven by geometric errors and physical performance indexes during machining process is introduced, which realizes the linkage optimization of process design and machining. Finally, aviation thin-walled parts are taken as an example to develop a DTPM prototype. Its application examples show that DTPM could provide supports for aerospace manufacturing enterprises to innovate process planning methods and realize the linkage optimization of process design and machining.

Key words: digital twin, intelligent process planning, digital twin process model, quality control, aviation complex parts, intelligent decision-making

中图分类号: