• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (12): 107-115.doi: 10.3901/JME.2024.12.107

• 特邀专栏:可解释可信AI驱动的智能监测与诊断 • 上一篇    下一篇

扫码分享

基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究

刘岳开1,2, 王天杨1,2, 褚福磊1,2   

  1. 1. 清华大学摩擦学国家重点实验室 北京 100084;
    2. 清华大学机械工程系 北京 100084
  • 收稿日期:2023-07-22 修回日期:2024-04-10 出版日期:2024-06-20 发布日期:2024-08-23
  • 作者简介:刘岳开,男,1994年出生,博士。主要研究方向为复杂机电类旋转机械的智能诊断方法与知识嵌入。E-mail:lykai@tsinghua.edu.cn;褚福磊(通信作者),男,1959年出生,博士,教授,博士研究生导师。主要研究方向为旋转机械动力学、机械故障诊断技术、非线性振动与控制等。E-mail:chufl@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(52305116)和国家自然科学基金委员会与波兰国家科学中心合作研究(52161135101)资助项目。

Study on Fault Diagnostics and Knowledge Embedding of Complex Rotating Machinery Components Based on Low Delay Interpretable Deep Learning

LIU Yuekai1,2, WANG Tianyang1,2, CHU Fulei1,2   

  1. 1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084;
    2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
  • Received:2023-07-22 Revised:2024-04-10 Online:2024-06-20 Published:2024-08-23

摘要: 对于复杂旋转机械关键部件的诊断任务,模型设计容易受限于以下两个特点:① 机理驱动的方法往往难以实现复杂系统的完备、精准建模;② 数据驱动方法多数需要规模化的高质量训练数据集用于训练。针对上述问题,提出一种先验知识嵌入的深度学习模型,融合机理知识与传感器信号特征。并通过引入轻量化模型结构,在保证模型精准性的前提下降低推理延迟。首先,通过融合先验机理知识与传感器信号特征,构建关键部件数字孪生体。然后,设计先验知识嵌入模块来提升深度学习模型对融合特征的表征能力。最后,基于帕累托最优化理论,设计考虑准确性指标和计算效率指标的多目标优化方法,对基于深度学习的诊断模型进行结构优化设计,并引入可解释性框架对深度学习模型决策过程进行分析。结果表明,所设计的关键部件数字孪生体能够提供丰富的先验信息从而加速模型收敛。基于帕累托最优化理论的训练策略,能够搜索到设定指标的相对最优解,从而在保证模型精准性的前提下有效降低模型推理延迟。

关键词: 可解释深度学习, 先验知识嵌入, 数字孪生, 帕累托最优化, 低延迟推理

Abstract: For the diagnosis task of key components of complex rotating machinery, the design of the diagnosis model is easily constrained by the following two characteristics:① Mechanism-driven methods are often hard to accomplish complete and accurate modelling of complex systems;② Data-driven approaches often require large-scale and high-quality data for training. To solve the above problems, a deep learning model with prior knowledge embedding is proposed to fuse prior knowledge from the mechanism and features of sensor signals. By introducing lightweight model structures, the inference delay of the model is reduced while ensuring its accuracy. Firstly, the digital twin model of key components is constructed by fusing the prior mechanism knowledge and sensor signal features. Secondly, a prior knowledge embedding module is designed to enhance the representation ability of the deep learning model for fused features. Finally, a multi-objective optimization method considering both accuracy and computing efficiency metrics is designed based on the Pareto-optimal theorem. An interpretable framework is introduced to analyse the decision-making process of the deep learning model. The results indicate that the designed digital twin of key components can provide rich prior knowledge to accelerate the convergence of the model. The training strategy based on the Pareto-optimal theorem can find the optimal solution according to settled metrics. The optimization can effectively reduce the inference latency while ensuring recognition performance.

Key words: interpretable deep learning, prior knowledge embedding, digital twin, pareto optimal, low-latency inference

中图分类号: