• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (12): 147-157.doi: 10.3901/JME.2024.12.147

• 特邀专栏:可解释可信AI驱动的智能监测与诊断 • 上一篇    下一篇

扫码分享

基于可解释物理引导空间注意力改进的跨工艺参数立铣刀磨损辨识

赖旭伟1, 丁昆1, 张楷1,2, 黄锋飞1, 郑庆1,2, 李致萱1, 丁国富1,2   

  1. 1. 西南交通大学机械工程学院 成都 610031;
    2. 西南交通大学轨道交通运维技术与装备四川省重点实验室 成都 610031
  • 收稿日期:2023-09-01 修回日期:2024-05-06 出版日期:2024-06-20 发布日期:2024-08-23
  • 作者简介:赖旭伟,男,1994年出生,博士研究生。主要研究方向为刀具磨损监测、可解释深度学习。E-mail:2665395992@qq.com;张楷(通信作者),男,1990年出生,博士,助理教授。主要研究方向为智能故障诊断与寿命预测、复杂装备数字孪生运维技术。E-mail:zhangkai@swjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB1708000)、国家自然科学基金青年基金(52205130)和中央高校基本科研业务费专项资金(2682022CX006)资助项目。

Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification

LAI Xuwei1, DING Kun1, ZHANG Kai1,2, HUANG Fengfei1, ZHENG Qing1,2, LI Zhixuan1, DING Guofu1,2   

  1. 1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031;
    2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031
  • Received:2023-09-01 Revised:2024-05-06 Online:2024-06-20 Published:2024-08-23

摘要: 深度学习的可解释性不足已成为制约其工业应用的重要问题。刀具磨损状态智能评估方法有着较高的速度、自动化和智能化程度,然而其端到端的模式及提取的特征难以被理解。尤其在跨工艺参数时,其可解释性差、可靠性不足。为此提出一种基于可解释物理引导空间注意力机制改进的跨工艺参数立铣刀磨损辨识方法,首先根据信号的周期不连续特性构建了一种物理引导的空间注意力模块,实现了在跨工艺参数(进给速度、切深)下关键信号片段的自适应捕捉;其次结合最大均值差异及方差约束对特征进行约束,缩小了不同工艺参数下磨损特征的分布差异,同时提升了同类磨损特征的聚集程度。通过实际的刀具切削试验验证,所提方法有效提升了跨工艺参数下的辨识精度;空间注意力权重分布的可视化分析结果表明,所提方法提取出的特征具有明显的物理可解释性。所提方法可为刀具磨损监测的深度辨识模型进行可解释性优化提供参考。

关键词: 可解释深度学习, 刀具磨损, 空间注意力, 物理特性

Abstract: The insufficient interpretability of deep learning has become a critical issue restraining its industrial applications. Intelligent assessment methods for tool wear state exhibit high levels of speed, automation, and intelligence; however, the end-to-end patterns and extracted features are challenging to be understood. Especially when dealing with cross-process parameters, their interpretability is poor, and their reliability is insufficient. Cross-process parameters end milling cutter wear state identification model is proposed to address this based on an improved interpretable-based physically guided spatial attention mechanism. Firstly, a physically guided spatial attention module is constructed based on the periodic discontinuity characteristics of the signals, enabling the adaptive capture of key signal fragments under cross-process parameters such as feed rate and cutting depth. Secondly, constraints are applied to the features using maximum mean discrepancy and variance, reducing the distribution discrepancies of wear features under different process parameters while enhancing the aggregation of similar wear features. Through practical cutting experiments on the tool, the effectiveness of the proposed method in improving the identification accuracy under cross-process parameters is validated. Visual analysis of the spatial attention weight distribution indicates that the proposed method's extracted features possess obvious physical interpretability. The proposed method can provide a reference for the interpretability optimization of the deep learning-based identification model of tool wear monitoring.

Key words: interpretability deep learning, tool wear, spatial attention, physical characteristics

中图分类号: