• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (17): 310-324.doi: 10.3901/JME.2023.17.310

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

基于高斯过程潜力模型的刀具磨损预测

刘洪成1, 袁德志2, 朱锟鹏1,2   

  1. 1. 武汉科技大学机械自动化学院 武汉 430081;
    2. 中国科学院合肥物质科学研究院智能机械研究所 常州 213164
  • 收稿日期:2022-09-09 修回日期:2023-03-08 出版日期:2023-09-05 发布日期:2023-11-16
  • 通讯作者: 朱锟鹏(通信作者),男,1977年出生,教授,研究员,博士研究生导师。主要研究方向为精密切削加工理论、智能控制技术与金属增材制造技术。E-mail:zhukp@iamt.ac.cn
  • 作者简介:刘洪成,男,1997年出生。主要研究方向为加工状态智能监测。E-mail:liuhongcheng1997@163.com
  • 基金资助:
    国家自然科学基金资助项目(52175528)。

Tool Wear Prediction Based on Gaussian Process Latent Force Model

LIU Hongcheng1, YUAN Dezhi2, ZHU Kunpeng1,2   

  1. 1. School of Mechanical Automation, Wuhan University of Science and Technology, Wuhan 430081;
    2. Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164
  • Received:2022-09-09 Revised:2023-03-08 Online:2023-09-05 Published:2023-11-16

摘要: 刀具磨损预测对于提高加工精度和生产效率具有重要意义。刀具磨损预测模型主要包括基于物理的模型和基于数据驱动的模型。基于物理的模型一般使用经验公式或简化公式对刀具磨损过程进行建模,在切削参数变化的情况下其预测精度通常会变低。另一方面,数据驱动模型通过测量数据来估计刀具磨损,没有考虑刀具磨损机理,导致模型泛化性和结果可解释性较差。为了解决这些问题,提出了一种新的用于刀具磨损预测的高斯过程潜力模型。所提出的模型使用高斯过程对刀具磨损物理模型的未知参数进行建模,建立了一个物理信息机器学习模型。高斯过程潜力模型不仅避免了物理模型的参数识别,而且挖掘了来自物理域和数据域的隐藏信息。此外,通过将物理模型与高斯过程的协方差函数相结合,构建了一个物理信息协方差函数来约束模型的输出,提高了预测精度。多工况试验结果表明,所提方法的绝对平均误差和均方根误差分别为2.594 5、3.740 8,比传统数据驱动模型的预测误差要更小,预测精度进一步提升。

关键词: 刀具磨损预测, 高斯过程, 潜力模型

Abstract: Tool wear prediction is of great significance for improving machining accuracy and production efficiency. Tool wear prediction models include physics-based models and data-driven models. The physics-based models often apply empirical or simplified formula to model the tool wear process which often loss prediction accuracy under changing cutting parameters. On the other side, the data-driven models estimate the tool wear by monitor data without considering the mechanisms of tool wear, resulting in low model generalization and results interpretation. To address these issues, a novel Gaussian process latent force model for tool wear prediction is proposed. The proposed model applies Gaussian process to model the unknown parameters of the tool wear physical model, and establishes a physics-informed machine learning model. The Gaussian process latent force model not only avoids identifying parameters in the physical model, but also explores hidden information from physics and data domains. Moreover, by integrating the physical model with the Gaussian process covariance function, a physics-informed covariance function is constructed to constrain the outputs of the model and improve the prediction accuracy. The multi-condition experiments results show that the mean absolute error and root mean square error of the proposed method are 2.5 945 and 3.7 408, respectively, which are smaller than the prediction error of the traditional data-driven models and further improve the prediction accuracy.

Key words: tool wear prediction, Gaussian process, latent force model

中图分类号: