[1] ZHANG B, GRAVEL D, ZHANG G, et al. Robotic force control assembly parameter optimization for adaptive production[C]//IEEE International Conference on Robotics and Automation, May, 9-13, 2011, Shanghai, China. New York:IEEE, 2011:464-469. [2] LI B, CHEN H, JIN T. Industrial robotic assembly process modeling using support vector regression[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, September, 14-18, 2014, Chicago, USA. New York:IEEE, 2014:4334-4339. [3] MARVEL J A, NEWMAN W S, GRAVEL D P, et al. Automated learning for parameter optimization of robotic assembly tasks utilizing genetic algorithms[C]//IEEE International Conference on Robotics and Biomimetics, December, 18-22, 2009, Guilin, China. New York:IEEE, 2009:179-184. [4] IBRAHIM J, PLAPPER P. Contact-state modeling of robotic assembly tasks using Gaussian mixture models[J]. Procedia Cirp, 2014, 23:229-234. [5] 董悫, 张立建, 易旺民, 等. 基于动力学前馈的空间机器人多销孔装配力柔顺控制[J]. 机械工程学报, 2019, 55(4):207-217. DONG Que, ZHANG Lijian, YI Wangmin, et al. Force compliance control of multi-peg-in-hole assembling by space robot based on dynamic feedforward[J]. Journal of Mechanical Engineering, 2019, 55(4):207-217. [6] GRUENDLING T, GUILHAUS M, CHRISTOPHER B K. Design of experiment (DoE) as a tool for the optimization of source conditions in SEC-ESI-MS of functional synthetic polymers synthesized via ATRP[J]. Macromolecular Rapid Communications, 2009, 30(8):589-597. [7] DIETRICH F, BUCHHOLZ D, WOBBE F, et al. On contact models for assembly tasks:Experimental investigation beyond the peg-in-hole problem on the example of force-torque maps[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, October, 18-22, 2010, Taipei, Taiwan, China. New York:IEEE, 2010:2313-2318. [8] CHEN H, XU J, ZHANG B, et al. Improved parameter optimization method for complex assembly process in robotic manufacturing[J]. Industrial Robot An International Journal, 2017, 44(1):21-27. [9] 张思思, 李凤鸣, 杨旭亭, 等. 基于接触状态感知发育的机器人柔性装配方法[J/OL]. 控制与决策, [2021-02-22].https://doi.org/10.13195/j.kzyjc.2019.1079. ZHANG Sisi, LI Fengming, YANG Xuting, et al. Flexible assembly method based on contact state perception development[J/OL]. Control and Decision, [2021-02-22]. https://doi.org/10.13195/j.kzyjc.2019.1079. [10] SCHERZINGER S, RÖNNAU A, DILLMANN R. Contact skill imitation learning for robot-independent assembly programming[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, November, 4-8, 2019, Macau, China. New York:IEEE, 2019:4309-4316. [11] LI F, JIANG Q, ZHANG S, et al. Robot skill acquisition in assembly process using deep reinforcement learning[J]. Neurocomputing, 2019, 345:92-102. [12] 孟少华, 胡瑞钦, 张立建, 等. 一种基于机器人的航天器大型部件自主装配方法[J]. 机器人, 2018, 40(1):81-88. MENG Shaohua, HU Ruiqin, ZHANG Lijian, et al. A method of autonomous assembly of large spacecraft components using robot[J]. Robot, 2018, 40(1):81-88. [13] 季旭全, 王君臣, 赵江地, 等. 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 54(23):63-72. JI Xuquan, WANG Junchen, ZHAO Jiangdi, et al. Intelligent robotic assembly method of spaceborne equipment based on visual guidance[J]. Journal of Mechanical Engineering, 2018, 54(23):63-72. [14] RASMUSSEN C E. Gaussian processes in machine learning[C]//Summer School on Machine Learning, February, 2-14, 2003. Canberra, Australia. Berlin:Springer, 2003:63-71. [15] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceeding of the Conference and Workshop on Neural Information Processing System, December, 8-13, 2014, Montreal, Canada. New York:IEEE, 2014:2672-2680. [16] CHENG R, JIN Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2):191-204. [17] PRICE K, STORN R M, LAMPINEN J A. Differential evolution:a practical approach to global optimization[M]. Berlin:Springer Science and Business Media, 2006. [18] WANG H, LI H, LIU Y, et al. Opposition-based particle swarm algorithm with Cauchy mutation[C]//IEEE Congress on Evolutionary Computation, September, 25-28, 2007, Singapore. New York:IEEE, 2007:4750-4756. [19] ZHOU J, FANG W, WU X, et al. An opposition-based learning competitive particle swarm optimizer[C]//IEEE Congress on Evolutionary Computation, July, 24-29, 2016, Vancouver, Canada. New York:IEEE, 2016:515-521. [20] 夏学文, 刘经南, 高柯夫, 等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015, 38(7):1397-1407. XIA Xuewen, LIU Jingnan, GAO Kefu, et al. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Journal of Computer Science and Technology, 2015, 38(7):1397-1407. [21] TAX D M J, DUIN R P W, Support vector domain description[J]. Pattern Recognition, 1999, 20(6):1191-1199. |