[1] 郭建英,孙永全,于春雨,等. 复杂机电系统可靠性预测的若干理论与方法[J]. 机械工程学报,2014,50(14):1-13. GUO Jianying,SUN Yongquan,YU Chunyu,et al. Some theory and method for complex electromechanical system reliability prediction[J]. Journal of Mechanical Engineering,2014,50(14):1-13. [2] 冯鹏飞,朱永生,王培功,等. 基于相关向量机模型的设备运行可靠性预测[J]. 振动与冲击,2017,36(12):146-149. FENG Pengfei,ZHU Yongsheng,WANG Peigong,et al. Operational reliability prediction of equipment based on relevance vector machine[J]. Journal of Vibration and Shock,2017,36(12):146-149. [3] VILLEGAS M A,PEDREGAL D J,TRAPERO J R. A support vector machine for model selection in demand forecasting applications[J]. Computers & Industrial Engineering,2018,121:1-7. [4] 舒星,刘永刚,申江卫,等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报,2021,57(14):118-128. SHU Xing,LIU Yonggang,SHEN Jiangwei,et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering,2021,57(14):118-128. [5] ZHAO Qi,QIN Xiaoli,ZHAO Hongbo,et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability,2018,85:99-108. [6] 周澄,邓菲,刘尧,等. 基于神经网络和支持向量机的导波弯管腐蚀损伤程度辨识研究[J]. 机械工程学报,2021,57(12):136-144. ZHOU Cheng,DENG Fei,LIU Yao,et al. Identification of corrosion damage degree of guided wave bend pipe based on neural network and support vector machine[J]. Journal of Mechanical Engineering,2021,557(12):136-144. [7] 李素,袁志高,王聪,等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报,2018,13(1):70-84. LI Su,YUAN Zhigao,WANG Cong,et al. Optimization of support vector machine parameters based on group intelligence algorithm[J]. CAAI Transactions on Intelligent Systems,2018,13(1):70-84. [8] PAI Pingfeng. System reliability forecasting by support vector machines with genetic algorithms[J]. Mathematical and Computer Modelling,2006,43(3-4):262-274. [9] AZADEH A,SEIF J,SHEIKHALISHAHI M,et al. An integrated support vector regression-imperialist competitive algorithm for reliability estimation of a shearing machine[J]. International Journal of Computer Integrated Manufacturing,2016,29(1):16-24. [10] ZHAO Wei,TAO Tao,DING Zhuoshu,et al. A dynamic particle filter-support vector regression method for reliability prediction[J]. Reliability Engineering & System Safety,2013,119:109-116. [11] 丁嘉鑫,王振亚,姚立纲,等. 广义复合多尺度加权排列熵与参数优化支持向量机的滚动轴承故障诊断[J]. 中国机械工程,2021,32(2):147-155. DING Jiaxin,WANG Zhenya,YAO Ligang,et al. Rolling bearing fault diagnosis based on GCMWPE and parameter optimization SVM[J]. China Mechanical Engineering,2021,32(2):147-155. [12] YAZDANI M,BABAGOLZADEH M,KAZEMITASH N,et al. Reliability estimation using an integrated support vector regression-variable neighborhood search model[J]. Journal of Industrial Information Integration,2019,15:103-110. [13] LINS I D,MOURA M D C,ZIO E,et al. A particle swarm-optimized support vector machine for reliability prediction[J]. Quality and Reliability Engineering International,2012,28(2):141-158. [14] WANG Dongshu,TAN Dawei,LIU Lei. Particle swarm optimization algorithm:An overview[J]. Soft Computing,2018,22(2):387-408. [15] TAO Xiang,LIAO Xiaofeng,WONG K W. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map[J]. Applied Mathematics and Computation,2007,190(2):1637-1645. [16] 宫华,李作华,刘洪涛,等. 基于改进PSO-BP神经网络的贮存可靠性预测[J]. 运筹与管理,2020,29(8):105-111. GONG Hua,LI Zuohua,LIU Hongtao,et al. Storage reliability prediction based on improved PSO-BP neural network[J]. Operations Research and Management,2020,29(8):105-111. [17] 王尔申,庞涛,曲萍萍,等. 基于混沌的改进粒子群优化粒子滤波算法[J]. 北京航空航天大学学报,2016,42(5):885-890. WANG Ershen,PANG Tao,QU Pingping,et al. Improved particle filter algorithm based on chaos particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(5):885-890. [18] CHEN Ke,ZHOU Fengyu,LIU Aling. Chaotic dynamic weight particle swarm optimization for numerical function optimization[J]. Knowledge-Based Systems,2018,139:23-40. [19] XU K,XIE M,TANG L C,et al. Application of neural networks in forecasting engine systems reliability[J]. Applied Soft Computing,2003,2(4):255-268. [20] BAI Bin,ZHANG Junyi,WU Xuan,et al. Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems[J]. Expert Systems with Applications,2021,177:114952. |