• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (16): 280-289.doi: 10.3901/JME.2022.16.280

• 运载工程 • 上一篇    下一篇

扫码分享

基于高斯混合模型的个性化自动驾驶决策控制研究

杨威1,2, 郑玲1,2, 李以农1,2   

  1. 1. 重庆大学汽车工程学院 重庆 400044;
    2. 重庆大学机械传动国家重点实验室 重庆 400044
  • 收稿日期:2021-03-05 修回日期:2022-02-10 出版日期:2022-08-20 发布日期:2022-11-03
  • 通讯作者: 郑玲(通信作者),女,1963年出生,博士,教授,博士研究生导师。主要研究方向为汽车振动噪声分析与控制、智能汽车感知与控制理论方法。E-mail:zling@cqu.edu.cn
  • 作者简介:杨威,男,1992年出生,博士研究生。主要研究方向为智能汽车路径规划与控制。E-mail:yangwei07@cqu.edu.cn;
    李以农,男,1961年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制、智能车辆运动控制。E-mail:ynli@cqu.edu.cn
  • 基金资助:
    国家自然科学基金(51875061)、国家重点研发计划(2016YFB0100904)和重庆市技术创新与应用发展专项(cstc2019jscx-zdztzxX0032)资助项目

Personalized Automated Driving Decision Based on the Gaussian Mixture Model

YANG Wei1,2, ZHENG Ling1,2, LI Yinong1,2   

  1. 1. College of Automotive Engineering, Chongqing University, Chongqing 400044;
    2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044
  • Received:2021-03-05 Revised:2022-02-10 Online:2022-08-20 Published:2022-11-03

摘要: 大数据时代背景下,借助对自然驾驶员行驶数据的研究和分析,获取个性化的驾驶决策方法,将进一步提升自动驾驶决策过程的安全性和舒适性。采用改进贝塞尔曲线方法生成备选路径,建立二次规划模型规划车辆速度与加速度,提出基于高斯过程的自然驾驶员行驶速度预测模型预测障碍物运动,有效地规划出安全的参考行驶路径。研究并提出基于高斯混合模型的参考路径个性化评价策略,与路径合理性、规划一致性及速度波动性能目标相结合得到一条最优行驶路径。建立最优控制二次规划模型生成满足参考路径目标的车辆动力学状态,保证智能汽车决策系统能够从时空角度输出完整的控制目标。所提出的自动驾驶决策控制方法采用自然驾驶员行驶数据,是对个性化自动驾驶决策控制的探索与实践。

关键词: 贝塞尔曲线, 路径规划, 高斯过程, 高斯混合模型, 最优控制

Abstract: Under the era of big data, a personalized driving decision system would further improve the safety and comfort of the intelligent vehicle with the help of the research on naturalistic driving data. An improving method for Bézier curve path is proposed to achieve the efficient path planning for intelligent vehicle, and then, the quadratic programming for speed and acceleration of ego vehicle is developed, and a speed predictive model for naturalistic driver is built based on the Gaussian process theory, which lay the foundation for collision avoidance in path planning. A personalized path assessing method is developed based on Gaussian mixture model and combining with path rationality, planning homogeneity and speed fluctuation objectives to filter the personalized and agreeable target path. With the consideration of complete control targets, an optimal controller with quadratic programming is designed, and the reference path and target control parameters for automated driving are obtained simultaneously. The naturalistic driving data could be effectively applied with the proposed methods and the driving performance such as safety, comfort, personality would be improved.

Key words: Bézier curve, path planning, Gaussian process, Gaussian mixture model, optimal control

中图分类号: