• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (11): 216-225.doi: 10.3901/JME.2024.11.216

• 机器人及机构学 • 上一篇    下一篇

扫码分享

大型复杂锻件打磨路径的智能化规划方法

闫守鑫, 王伟, 苏鹏飞, 贠超   

  1. 北京航空航天大学机械工程及自动化学院 北京 100191
  • 收稿日期:2023-06-26 修回日期:2023-10-25 出版日期:2024-06-05 发布日期:2024-08-02
  • 作者简介:闫守鑫,男,1989年出生,博士研究生。主要研究方向为智能制造。E-mail:mylj0926@buaa.edu.cn
    王伟(通信作者),男,1982年出生,博士,副教授。主要研究方向为机器人动力学与控制。E-mail:wangwei701@buaa.edu.cn
  • 基金资助:
    国防基础科研(JCKY2021204B045)资助项目。

Intelligent Path Planning Method for Grinding Large Complex Forging Parts

YAN Shouxin, WANG Wei, SU Pengfei, YUN Chao   

  1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191
  • Received:2023-06-26 Revised:2023-10-25 Online:2024-06-05 Published:2024-08-02

摘要: 大型复杂锻件作为能源、船舶、交通等领域的主要承力构件,对后处理的尺寸精度和表面质量要求高,实现大型复杂锻件的自动化打磨是锻造行业亟待解决的共性难题。主要技术障碍之一是:大型复杂锻件存在较大的热变形、多种随机锻造缺陷,难以自动生成打磨加工路径。首先提出了一种大型复杂锻件随机缺陷识别算法,通过随机采样一致性算法(Random sample consensus, RANSAC)与改进迭代最近点(Modified iterative closest point, M-ICP) 算法相结合,对标准件点云与锻件点云进行配准,得到需要打磨的随机缺陷点云;接着,按照缺陷面积大小,对随机缺陷点云进行的分类,建立了打磨路径生成策略;然后,利用随机缺陷点云中的位置坐标信息,不需要CAD模型,直接生成了机器人打磨路径;最后,开展了大型复杂锻件的机器人打磨实验,实验结果表明:打磨路径智能化生成方法准确识别了随机锻造缺陷特征,正确规划了机器人打磨路径,提高了打磨效率和打磨质量,为大型复杂锻件后处理加工提供了技术方法。

关键词: 缺陷识别, 智能化打磨, 路径规划, 大型复杂锻件

Abstract: Large complex forgings, as the main load-bearing components in the fields of energy, ships, transportation, etc., have high requirements for dimensional accuracy and surface quality of post-processing. Realizing automatic grinding of large and complex forgings is a common problem that the forging industry urgently needs to solve. One of the main technical obstacles is that large and complex forgings have significant thermal deformation and various random forging defects, resulting in difficulty of automatically generating grinding paths. Firstly, a random defect identification algorithm for large and complex forgings is proposed. By combining the random sample consensus (RANSAC) algorithm with the modified iterative closest point (M-ICP) algorithm, the point cloud from the standard part and that from the forging part are registered to obtain the random defect point cloud referring to the forging defects to be polished; Next, based on the dimension of the defect area, the random defect point cloud is classified and a grinding path generation strategy was established; Then, using the position coordinate information in the random defect point cloud, the robot grinding path is directly generated without the need for a CAD model; Finally, robot grinding experiments are conducted on large and complex forgings. The experimental results showe that the intelligent generation method of grinding paths accurately identified the characteristics of random forging defects, correctly planned the robot grinding path, improved grinding efficiency and quality, and provided a technical method for the post-processing of large complex forgings.

Key words: defect identification, intelligent grinding, robotic grinding, large complex forging

中图分类号: