机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 1-21.doi: 10.3901/JME.2024.07.001
邓建新1,2, 袁邦颐1,2, 黄秋林1,2, 丁度坤1,3, 辛曼玉3,4, 刘光明1,2
收稿日期:
2023-04-13
修回日期:
2023-09-17
出版日期:
2024-04-05
发布日期:
2024-06-07
作者简介:
邓建新,男,1979年出生,博士,副教授。主要研究方向为制造系统及其信息学、网络化制造、挤压铸造。E-mail:dengjxin@163.com;袁邦颐,男,1998年出生,硕士研究生。主要研究方向为机器人磨抛技术。E-mail:992347414@qq.com;黄秋林,男,1994年出生,硕士研究生。主要研究方向为机器人视觉技术。E-mail:912647035@qq.com;丁度坤,男,1981年出生,博士,副教授。主要研究方向为机器人技术及应用、机器人磨抛力控制。E-mail:124400105@qq.com;辛曼玉,女,1980年出生,硕士研究生。主要研究方向为智能制造。E-mail:4415822@qq.com;刘光明,男,1997年出生,硕士研究生。主要研究方向为智能制造。E-mail:1299745810@qq.com
基金资助:
DENG Jianxin1,2, YUAN Bangyi1,2, HUANG Qiulin1,2, DING Dukun1,3, XIN Manyu3,4, LIU Guangming1,2
Received:
2023-04-13
Revised:
2023-09-17
Online:
2024-04-05
Published:
2024-06-07
摘要: 磨抛加工是提升零件表面质量和精度的重要方法之一。基于工业机器人系统的复杂曲面磨抛技术正逐渐成熟,凭借灵活、占地小、精度高、成本低等优势正逐渐取代人工磨抛和数控机床磨抛成为主流。通过分析基于工业机器人的磨抛加工原理,引出影响机器人磨抛加工精度效果的关键问题:磨抛加工轨迹的规划精度和力控制精度,前者关注加工效率和精度之间的平衡,后者则更侧重于加工的精度和一致性;从这两个方面出发,总结机器人磨抛系统加工轨迹规划方法和柔顺力控制策略的研究目的、特点和成果进展。机器人磨抛系统加工轨迹规划以应用与改进传统数控机床磨抛中常用的加工路径规划方法为主,出现了少量根据机器人特性提出的加工路径规划方法;磨抛柔顺力控制技术出现了被动柔顺、主动(阻抗控制、力/位混合控制)及智能控制等策略,对比分析了各方法原理、研究应用情况和优劣;并提出了未来可能的发展方向。为该领域的研究者提供指引。
中图分类号:
邓建新, 袁邦颐, 黄秋林, 丁度坤, 辛曼玉, 刘光明. 基于工业机器人的复杂曲面磨抛关键技术综述[J]. 机械工程学报, 2024, 60(7): 1-21.
DENG Jianxin, YUAN Bangyi, HUANG Qiulin, DING Dukun, XIN Manyu, LIU Guangming. Review on the Key Technologies of Complex Surfaces Polishing Based on Robots[J]. Journal of Mechanical Engineering, 2024, 60(7): 1-21.
[1] ZHONG Z W. Recent advances in polishing of advanced materials[J]. Materials and Manufacturing Processes,2008,23(5):449-456. [2] ZHOU H B,MA S T,WANG G L,et al. A hybrid control strategy for grinding and polishing robot based on adaptive impedance control[J]. Advances in Mechanical Engineering,2021,13(3):1-7. [3] 金磊,胡泽启,刘华明,等. 机器人在零件清理打磨中的应用及发展趋势[J]. 机床与液压,2017,45(15):4-9. JIN Lei,HU Zeqi,LIU Huaming,et al. Application and development trend of robot in cleaning and grinding of parts[J]. Machine Tool & Hydraulics,2017,45(15):4-9. [4] DAS J,LINKE B. Effect of manual grinding operations on surface integrity[J]. Procedia CIRP,2016,45:95-98. [5] JIANG L,ZHANG H,LI T,et al. Development of a multi-DOFs pneumatic servo polishing robot[C]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur:IEEE,2018:2165-2170. [6] PANDREMENOS J,DOUKAS C,STAVROPOULOS P,et al. Machining with robots:A critical review[J]. Proceedings of DET,2011(1):1-9. [7] LIN Fengyun,TIAN-SHENG L. Development of a robot system for complex surfaces polishing based on CL data[J]. The International Journal of Advanced Manufacturing Technology,2005,26(9):1132-1137. [8] 刘志恒,赵立军,李瑞峰,等. 面向轮毂磨抛的手腕偏置机器人运动学快速求解方法[J]. 机械工程学报,2022,58(14):126-136. LIU Zhiheng,ZHAO Lijun,LI Ruifeng,et al. Fast solution method for the kinematics of wrist offset robot oriented to wheel hub grinding and polishing[J]. Journal of Mechanical Engineering,2022,58(14):126-136. [9] LIN X H,WANG Z Z,GUO Y B,et al. Research on the error analysis and compensation for the precision grinding of large aspheric mirror surface[J]. The International Journal of Advanced Manufacturing Technology,2014,71(1):233-239. [10] 刘月明. 磨削过程建模与点磨削工艺的若干研究[D]. 沈阳:东北大学,2012. LIU Yueming,Research on the model of grinding process and the technology of point grinding[D]. Shenyang:Northeastern University,2012. [11] 李晓炜,饶巍林. 机器人恒力磨抛材料去除研究[J]. 机床与液压,2021,49(4):31-36. LI Xiaowei,RAO Weilin. Research on material removal of robotic constant-force grinding and polishing[J]. Machine Tool & Hydraulics,2021,49(4):31-36. [12] 韩晓露,王家忠,弋景刚,等. 基于Preston方程的反射杯抛磨工艺参数研究[J]. 机床与液压,2018,46(14):12-16. HAN Xiaolu,WANG Jiazhong,YI Jinggang,et al. Study on polishing processing parameters of reflective cup based on preston equation[J]. Machine Tool & Hydraulics,2018,46(14):12-16. [13] IHARA M,MATSUBARA A,BEAUCAMP A. Study on removal mechanism at the tool rotational center in bonnet polishing of glass[J]. Wear,2020,454:203321. [14] XIE D G,GAO B,YAO Y,et al. Study of local material removal model of bonnet tool polishing[J]. Key Engineering Materials,2006,304:335-339. [15] 郝晓伟,刘佳,杨胜强,等. 机器人变抛磨头抛磨系统搭建及其实验研究[J]. 机械设计与制造,2022(6):83-87. HAO Xiaowei,LIU Jia,YANG Shengqiang,et al. Construction and experimental study of a robot variable polishing head polishing system[J]. Machinery Design & Manufacture,2022(6):83-87. [16] 张铁,张斌. 机器人砂带磨削路径优化插补算法[J]. 中国机械工程,2018,29(8):983-990. ZHANG Tie,ZHANG Bin. Optimized interpolation algorithm for robotic belt grinding processes[J]. China Mechanical Engineering,2018,29(8):983-990. [17] 郑荟莹. 基于曲率线网的复杂曲面建模技术研究与实现[D]. 哈尔滨:哈尔滨工业大学,2018. ZHENG Huiying. Research and implementation of complex surface modeling technology based on curvature line net[D]. Harbin:Harbin Institute of Technology,2018. [18] 潘云鹤.计算机图形学——原理、方法及应用(修订版)[M]. 北京:高等教育出版社,2003. PAN Yunhe. Computer graphics——principles,methods and applications (revised edition)[M]. Beijing:Higher Education Press,2003. [19] 尹小奎,李奇敏,叶仲泉,等. NURBS曲面光顺方法综述[J]. 图学学报,2012,33(5):13-18. YIN Xiaokui,LI Qimin,YE Zhongquan,et al. NURBS surface fairing method[J]. Journal of Graphics,2012,33(5):13-18. [20] 来新民,黄田,曾子平,等. 基于NURBS的散乱数据点自由曲面重构[J]. 计算机辅助设计与图形学学报,1999(5):433-436. LAI Xinmin,HUANG Tian,ZENG Ziping,et al. NURBS based approach of surface reconstruction from scattered data[J]. Journal of Computer Aided Design and Computer Graphics,1999(5):433-436. [21] PARK H,KIM K,LEE S C. A method for approximate NURBS curve compatibility based on multiple curve refitting[J]. Computer Aided Design 2000,32(4):237-252. [22] 张海洋,杨文玉,张家军,等. 叶片机器人砂带磨抛的轨迹规划研究[J]. 机电工程,2014,31(5):578-581. ZHANG Haiyang,YANG Wenyu,ZHANG Jiajun,et al. Trajectory planning for robotic belt grinding of turbine blade[J]. Journal of Mechanical & Electrical Engineering,2014,31(5):578-581. [23] 方健,尹旷,王红斌,等. 机器人砂带打磨路径规划[J]. 机械设计与研究,2021,37(6):1-6. FANG Jian,YIN Kuang,WANG Hongbin,et al. Path planning of robot belt grinding[J]. Machine Design and Research,2021,37(6):1-6. [24] 万从保. 航空发动机整体叶盘机器人磨抛加工关键技术研究[D]. 成都:电子科技大学,2017. WAN Congbao,Research on the key technology of robot polishing for aero engine blisk[D]. Chengdu:University of Electronic Science and Technology of China,2017. [25] 谭冠政,徐雄,肖宏峰. 工业机器人实时高精度路径跟踪与轨迹规划[J]. 中南大学学报,2005(1):102-107. TAN Guanzheng,XU Xiong,XIAO Hongfeng. Real-time and accurate hand path tracking and joint trajectory planning for industrial robots[J]. Journal of Central South University,2005(1):102-107. [26] 王伟,贠超,张令. 机器人砂带磨削的曲面路径优化算法[J]. 机械工程学报,2011,47(7):8-15. WANG Wei,YUN Chao,ZHANG Ling. Optimization algorithm for robotic belt surface grinding process[J]. Journal of Mechanical Engineering,2011,47(7):8-15. [27] PESSOLES X,TOURNIER C. Automatic polishing process of plastic injection molds on a 5-axis milling center[J]. Journal of Materials Processing Technology,2009,209(7):3665-3673. [28] SUN Y,FENG D,GUO D. An adaptive uniform toolpath generation method for the automatic polishing of complex surfaces with adjustable density[J]. The International Journal of Advanced Manufacturing Technology,2015,80(9):1673-1683. [29] TAM H,CHENG H. An investigation of the effects of the tool path on the removal of material in polishing[J]. Journal of Materials Processing Technology,2010,210(5):807-818. [30] 毛洋洋,赵欢,韩世博,等. 面向复杂曲面的机器人砂带磨抛路径规划及后处理研究[J]. 机电工程,2017,34(8):829-834. MAO Yangyang,ZHAO Huan,HAN Shibo,et al. Tool path planning and post-processing techniques of robotic belt grinding for complex surfaces[J]. Journal of Mechanical & Electrical Engineering,2017,34(8):829-834. [31] 罗来臻,赵欢,王辉,等. 复杂曲面机器人磨抛位姿优化与刀路规划[J]. 机械工程学报,2022,58(3):284-294. LUO Laizhen,ZHAO Huan,WANG Hui,et al. Pose optimization and tool path planning for robotic grinding of complicated curved surface[J]. Journal of Mechanical Engineering,2022,58(3):284-294. [32] 李尧,万奎平. 基于工业机器人的复杂曲面路径规划及组合抛光工艺研究[J]. 农业装备与车辆工程,2022,60(3):73-78. LI Rao,WAN Kuiping. Research on path planning for industrial robots in complex surfaces[J]. Agricultural Equipment & Vehicle Engineering,2022,60(3):73-78. [33] BERGER U,LEPRATTI R,MAY M. An approach for the automatic generation of robot paths from CAD-data[C]//2005 IEEE Conference on Emerging Technologies and Factory Automation. Catania:IEEE,2005:291-297. [34] KHARIDEGE A,TING D T,YAJUN Z. A practical approach for automated polishing system of free-form surface path generation based on industrial arm robot[J]. The International Journal of Advanced Manufacturing Technology,2017,93(9):3921-3934. [35] 葛科迪,赵欢,陈鹏飞,等. 面向复杂曲面加工的虚拟夹具辅助机器人示教编程研究[J]. 中国机械工程,2021,32(14):1716-1725. GE Kedi,ZHAO Huan,CHEN Pengfei,et al. Programming by demonstration with virtual fixture assistance for robotic machining of complex surfaces[J]. China Mechanical Engineering,2021,32(14):1716-1725. [36] 喻伟雄. 模具自由曲面自动打磨和抛光路径规划技术研究[D]. 长沙:湖南大学,2005. YU Weixiong. Studies on the technology of path planning in automatic grinding and polishing die and mould with free-form surfaces[D]. Changsha:Hunan University,2005. [37] 黄婷,孙立宁,王振华,等. 基于被动柔顺的机器人抛磨力/位混合控制方法[J]. 机器人,2017,39(6):776-785. HUANG Ting,SUN Lining,WANG Zhenhua,et al. Hybrid force/position control method for robotic polishing based on passive compliance structure[J]. Robot,2017,39(6):776-785. [38] FANG Z J,LI J J,ZHANG Q P,et al. Modeling and force control of robotic polishing system for the wheel hubs[C]//2019 IEEE International Conference on Robotics and Biomimetics(ROBIO). Dali:IEEE,2019:2660-2664. [39] ROSWELL A,XI F,LIU G. Modelling and analysis of contact stress for automated polishing[J]. International Journal of Machine Tools & Manufacture,2006,46(3-4):424-435. [40] 孟正大,戴先中. 基于神经网络逆系统方法的机器人柔顺性控制[J]. 东南大学学报,2004(S1):108-112. MENG Zhengda,DAI Xianzhong. Robot compliance control based on ANN inverse system method[J]. Journal of Southeast University,2004(S1):108-112. [41] 潘立,鲍官军,胥芳,等. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报,2018,52(1):125-132. PAN Li,BAO Guanjun,XU Fang,et al. Dynamic compliant control of six DOF assembly robot[J]. Journal of Zhejiang University,2018,52(1):125-132. [42] KANG S H,JIN M,CHANG P H. A solution to the accuracy/robustness dilemma in impedance control[J]. IEEE/ASME Transactions on Mechatronics,2009,14(3):282-294. [43] 葛吉民,邓朝晖,李尉,等. 机器人磨抛力柔顺控制研究进展[J]. 中国机械工程,2021,32(18):2217-2230. GE Jimin,DENG Zhaohui,LI Wei,et al. Research progresses of robot grinding and polishing force compliance controls[J]. China Mechanical Engineering,2021,32(18):2217-2230. [44] LEE S,WON S,CHOI S. Development of a new variable remote center compliance for assembly robots[J]. Advanced Robotics,2000,14(3):241-255. [45] WEI Y,XU Q. Design of a new passive end-effector based on constant-force mechanism for robotic polishing[J]. Robotics and Computer-Integrated Manufacturing,2022,74:102278. [46] ZHANG J,ZHAO L,LI L,et al. Design of passive constant-force end-effector for robotic polishing of optical reflective mirrors[J]. Chinese Journal of Mechanical Engineering,2022,35(1):141-148. [47] LIU C H,CHEN C C A,HUANG J S. The polishing of molds and dies using a compliance tool holder mechanism[J]. Journal of Materials Processing Technology,2005,166(2):230-236. [48] PARK DI,KIM H,PARK C,et al. Automatic assembly method with the passive compliant device[J]. Asian Control Conference ASCC,2017:347-348. [49] HUANG H,GONG Z M,CHEN X Q,et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology,2002,127(2):140-145. [50] WANG Q,WANG W,DING X,et al. A force control joint for robot-environment contact application[J]. Journal of Mechanisms and Robotics,2019,11(3):034502. [51] 林炳乾,郭彦青,杨韩峰,等. 自由曲面磨抛机械手末端执行器柔性设计与仿真[J]. 机械设计与研究,2020,36(2):6-11. LIN Bingqian,GUO Yanqing,YANG Hanfeng,et al. Flexible design and simulation of manipulator end effector for grinding and polishing of free-form surface[J]. Machine Design and Research,2020,36(2):6-11. [52] 刘祚时,吉协福,姜鸿雅. 打磨机器人控制系统设计与研究[J]. 组合机床与自动化加工技术,2020(5):113-115. LIU Zuoshi,JI Xiefu,JIANG Hongya. Automatic grinding robot control system design[J]. Modular Machine Tool&Automatic Manufacturing Technique,2020(5):113-115. [53] HUANG T,LI C,WANG Z,et al. Design of a flexible polishing force control flange[C]//2016 IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO). IEEE,2016:91-95. [54] 谢小辉,孙立宁,程源. 基于离线编程的机器人柔顺打磨方法及实验[J]. 南京理工大学学报,2016,40(5):619-625. XIE Xiaohui,SUN Lining,CHEN Yuan. Off-line program based robotic compliant grinding method and experiment[J]. Journal of Nanjing University of Science and Technology,2016,40(5):619-625. [55] 王飞,张健,彭利荣,等. 气囊抛光过程的运动精度控制[J]. 光学精密工程,2015,23(8):2220-2228. WANG Fei,ZHANG Jian,PENG Lirong,et al. Motion-precision control in bonnet-polishing[J]. Optics and Precision Engineering,2015,23(8):2220-2228. [56] LEE H,KIM J,KANG H. Airbag tool polishing for aspherical glass lens molds[J]. Journal of Mechanical Science and Technology,2010,24(1):153-158. [57] SLIGHTAM J E,NAGURKA M L,BARTH E J. Sliding mode impedance control of a hydraulic artificial muscle[C]//American Society of Mechanical Engineers. Dynamic Systems and Control Conference,Atlanta:ASME,2018:V001T13A003. [58] HUA Z,RONG X,LI Y,et al. Analysis and verification on energy consumption of the quadruped robot with passive compliant hydraulic servo actuator[J]. Applied Sciences,2020,10(1):340. [59] 张秀丽,谷小旭,赵洪福,等.一种基于串联弹性驱动器的柔顺机械臂设计[J]. 机器人,2016,38(4):385-394. ZHANG Xiuli,GU Xiaoxu,ZHAO Hongfu,et al. Design of a compliant robotic arm based on series elastic actuator[J]. Robot,2016,38(4):385-394. [60] 王雨,张慧博,戴士杰,等. 风电叶片打磨机器人柔性末端终端滑模力控制[J]. 计算机集成制造系统,2019,25(7):1757-1766. WANG Yu,ZHANG Huibo,DAI Shijie,et al. Terminal sliding mode control of flexible end grinding force of wind turbine blade grinding robot[J]. Computer Integrated Manufacturing Systems,2019,25(7):1757-1766. [61] 张国龙,张杰,蒋亚南,等. 机器人力控末端执行器综述[J]. 工程设计学报,2018,25(6):617-629. ZHANG Guo,ZHANG Jie,JIANG Yanan,et al. Review of robotic end-effector with force control[J]. Chinese Journal of Engineering Design,2018,25(6):617-629. [62] GUO J,WU D,CHEN K. Path generation method for robotic blades grinding based on predictive control and extended Kalman filter[C]//202010th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation,Control,and Intelligent Systems (CYBER). Xi'an:IEEE,2020:80-85. [63] HONGAN N. Impedance control an approach to manipulation:Part I-theory[J]. Transactions of the ASME. Journal of Dynamic Systems,Measurement and Control 1985,107(1):1-7. [64] 陈峰,费燕琼,赵锡芳. 机器人的阻抗控制[J]. 组合机床与自动化加工技术,2005(12):46-47. CHEN Feng,FEI Yanqiong,ZHAO Xifang. The impedance control method for robots[J]. Modular Machine Tool & Automatic Manufacturing Technique,2005(12):46-47. [65] 杨振. 基于阻抗控制的机器人柔顺性控制方法研究[D]. 南京:东南大学,2005. YANG Zhen. An overview on compliance control of robot based on the impedance control[D]. Nanjing:Southeast University,2005. [66] 陶红武,谭跃刚,陈建文. 四足机器人单腿系统及其跳跃柔顺控制的研究[J]. 机械设计与制造,2022(1):290-294. TAO Hongwu,TAN Yuegang,CHEN Jianwen. Research on the design and jump compliance control of single leg system for a quadruped robot[J]. Machinery Design & Manufacture,2022(1):290-294. [67] 刘华春. 机器人搅拌摩擦焊接触压力控制与实现[D]. 南京:南京航空航天大学,2020. LIU Huachun. Robot friction stir welding contact pressure control and achieve[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2020. [68] 梁秀权. 复杂曲面全数字式力控磨抛技术研究[D]. 武汉:华中科技大学,2019. LIANG Xiuquan. Digital force controlled grinding and polishing technology for complex surfaces[D]. Wuhan:Huazhong University of Science and Technology,2019. [69] SERAJI H,COLBAUGH R. Force tracking in impedance control[J]. The International Journal of Robotics Research,1997,16(1):97-117. [70] 李振,赵欢,王辉,等. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报,2022,58(9):200-209. LI Zhen,ZHAO Huan,WANG Hui,et al. Research on contact steady-state adaptive force tracking of robot grinding and polishing[J]. Journal of Mechanical Engineering,2022,58(9):200-209. [71] ZHANG T,JIANG L,FAN S,et al. Development and experimental evaluation of multi-fingered robot hand with adaptive impedance control for unknown environment grasping[J]. Robotica,2016,34(5):1168-1185. [72] JUNG S,HSIA T C,BONITZ R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology,2004,12(3):474-483. [73] JUNG S,HSIA T C. Force tracking impedance control of robot manipulators for environment with damping[C]//IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society. China Taipei:IEEE,2007:2742-2747. [74] LEE K,BUSS M. Force tracking impedance control with variable target stiffness[J]. IFAC Proceedings Volumes,2008,41(2):6751-6756. [75] DUAN J J,GAN Y H,CHEN M,et al. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment[J]. Robotics and Autonomous Systems,2018,102:54-65. [76] CHUNG J C H,LEININGER G G. Task-level adaptive hybrid manipulator control[J]. International Journal of Robotic Research,1990,9(3):63-73. [77] 朱雅光,金波,李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报,2014,48(8):1419-1426. ZHU Yaguang,JIN Bo,LI Wei. Leg compliance control of hexapod robot based on adaptive-fuzzy control[J]. Journal of Zhejiang University,2014,48(8):1419-1426. [78] 陈鹏飞,赵鑫,赵欢. 基于示教学习和自适应力控制的机器人装配研究[J]. 机电工程,2020,37(5):559-564. CHEN Pengfei,ZHAO Xin,ZHAO Huan. Robotic assembly based on learning from demonstration and adaptive force control[J]. Journal of Mechanical & Electrical Engineering,2020,37(5):559-564. [79] LIPPIELLO V,FONTANELLI G A,RUGGIERO F. Image-based visual-impedance control of a dual-arm aerial manipulator[J]. IEEE Robotics and Automation Letters,2018,3(3):1856-1863. [80] CHAN S P,YAO B,GAO W B,et al. Robust impedance control of robot manipulators[J]. Int. J. Robotice Automation,1991,6(4):220-227. [81] FAIEGHI M R,DELAVARI H,BALEANU D. A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(2):1021-1030. [82] 贾林,王耀南,何静,等. 自由曲面打磨机器人非奇异终端滑模阻抗控制[J]. 电子测量与仪器学报,2020,34(5):89-96. JIA Lin,WANG Yaonan,HE Jing,et al. Non-singular terminal sliding mode impedance control of free-form surface grinding robot[J]. Journal of Electronic Measurement and Instrumentation,2020,34(5):89-96. [83] 王伟,赵健廷,胡宽荣,等. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报,2020,50(2):464-471. WANG Wei,ZHAO Jianting,HU Kuanrong,et al. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode[J]. Journal of Jilin University,2020,50(2):464-471. [84] LEE J,CHANG P H,JIN M. Adaptive integral sliding mode control with time-delay estimation for robot manipulators[J]. IEEE Transactions on Industrial Electronics,2017,64(8):6796-6804. [85] JUNG S. Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network[J]. International Journal of Control,Automation and Systems,2018,16(2):937-943. [86] 李正义,曹汇敏. 适应环境刚度、阻尼参数未知或变化的机器人阻抗控制方法[J]. 中国机械工程,2014,25(12):1581-1585. LI Zhengyi,CAO Huimin. Robot Impedance control method adapting to unknown or changing environment stiffness and damping parameters[J]. China Mechanical Engineering,2014,25(12):1581-1585. [87] DU K L,HUANG X H,WANG M,et al. Robot impedance learning of the Peg-in-hole dynamic assembly process[J]. International Journal of Robotics & Automation,2000,15(3):107-118. [88] LIU J. RBF neural network design and simulation[M]. Berlin:Springer,2013. [89] WANG F,CHAO Z Q,HUANG L B,et al. Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode[J]. Cluster Computing,2019,22(3):S5799-S5809. [90] 刘宜成,熊宇航,杨海鑫. 基于RBF神经网络的多关节机器人固定时间滑模控制[J]. 控制与决策,2022,37(11):2790-2798. LIU Yicheng,XIONG Yuhang,YANG Haixin. Fixed-time sliding mode control of multi-joint robot based on RBF neural network[J]. Control and Decision,2022,37(11):2790-2798. [91] JUNG S,YIM S B,HSIA T C. Experimental studies of neural network impedance force control for robot manipulators[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164),Seoul:IEEE,2001:3453-3458. [92] 王宇驰,陈友东,游玮. 一种对机器人阻抗控制中不确定性进行补偿的方法[J]. 机床与液压,2016,44(9):7-9. WANG Yuchi,CHEN Youdong,YOU Wei. Method to compensate uncertainties in robot impedance control[J]. Machine Tool & Hydraulics,2016,44(9):7-9. [93] LIANG X,ZHAO H,LI X,et al. Force tracking impedance control with unknown environment via an iterative learning algorithm[J]. Science China Information Sciences,2019,62(5):1-3. [94] 崔亮. 机器人柔顺控制算法研究[D]. 哈尔滨:哈尔滨工程大学,2013. CUI Liang. The research of compliance control algorithms on robot[D]. Harbin:Harbin Engineering University,2013. [95] BUCHLI J,STULP F,THEODOROU E,et al. Learning variable impedance control[J]. The International Journal of Robotics Research,2011,30(7):820-833. [96] AN C,HOLLERBACH J. Kinematic stability issues in force control of manipulators[C]//Proceedings. 1987 IEEE International Conference on Robotics and Automation. Raleigh:IEEE,1987:897-903. [97] ZHANG H. Kinematic stability of robot manipulators under force control[C]//IEEE Computer Society. 1989 IEEE International Conference on Robotics and Automation.Canada:IEEE,1989:80-85. [98] FISHER W D,MUJTABA M S. Hybrid position/force control:A correct formulation[J]. The International Journal of Robotics Research,1992,11(4):299-311. [99] XU Q. Design and smooth position/force switching control of a miniature gripper for automated microhandling[J]. IEEE Transactions on Industrial Informatics,2013,10(2):1023-1032. [100] UZUNOVIC T,SABANOVIC A,YOKOYAMA M,et al. Novel algorithm for effective position/force control[J]. IEEE Journal of Industry Applications,2019,8(6):960-966. [101] UZUNOVIC T,SABANOVIC A,YOKOYAMA M,et al. Novel algorithm for position/force control of multi-DOF robotic systems[C]//2020 IEEE 16th International Workshop on Advanced Motion Control (AMC). Kristiansand:IEEE,2020:273-278. [102] 石益奇,苏圣超. 面向钢轨磨抛的协作机器人柔顺控制仿真研究[J]. 计算机仿真,2021,38(4):109-114. SHI Yiqi,SU Shengchao. Research on the compliant control simulation of cooperative robots in rail grinding and polishing[J]. Computer Simulation,2021,38(4):109-114. [103] FEDELE A,FIORETTI A,ULIVI G. Implementation of a hybrid force-position controller using sliding mode techniques[C]//Proceedings 1992 IEEE International Conference on Robotics and Automation. IEEE Computer Society. Nice:IEEE,1992:2126-2133. [104] BASSI E,BENZI F,CAPISANI L M,et al. Hybrid position/force sliding mode control of a class of robotic manipulators[C]//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 200928th Chinese Control Conference. IEEE,2009:2966-2971. [105] GRACIA L,SOLANES J E,MUÑOZ-BENAVENT P,et al. Adaptive sliding mode control for robotic surface treatment using force feedback[J]. Mechatronics,2018,52:102-118. [106] 刘速杰,李论,赵吉宾,等. 整体叶轮机器人研磨柔顺控制研究[J]. 机械设计与制造,2021(12):253-256. LIU Sujie,LI Lun,ZHAO Jibin,et al. Research on smooth control of grinding of integral impeller by robot[J]. Machinery Design & Manufacture,2021(12):253-256. [107] 张洪瑶,李论,赵吉宾,等. 基于模糊PID的力/位混合控制机器人自动化叶片磨削加工[J]. 组合机床与自动化加工技术,2021(11):147-150. ZHANG Hongyao,LI Lun,ZHAO Jibin,et al. Hybrid force/position control method for robot automatic grinding blades based on fuzzy PID[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(11):147-150. [108] 朱贺轩,赵勇,余觉,等. 面向打磨力控制的电磁柔顺单元控制策略仿真分析[J]. 机械设计与研究,2019,35(4):20-25. ZHU Hexuan,ZHAO Yong,YU Jue,et al. Simulation and analysis about control strategy of electromagnetic prismatic joint for force control in polishing process[J]. Machine Design and Research,2019,35(4):20-25. [109] 张铁,蔡超. 机器人研磨系统在浮动平台上的恒力控制研究[J]. 机械设计与制造,2019(S1):150-156. ZHANG Tie,CAI Chao. Research on constant force control of robot grinding system on floating platform[J]. Machinery Design & Manufacture,2019(S1):150-156. [110] MENDES N,NETO P. Indirect adaptive fuzzy control for industrial robots:A solution for contact applications[J]. Expert Systems with Applications,2015,42(22):8929-8935. [111] CHU W M,HUANG X,LI S G,et al. A ball head positioning method based on hybrid force-position control[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2021,235(8):1433-1444. [112] 尤子成,王志刚,郭宇飞. 振动基柔顺驱动打磨机器人的力/位混合控制研究[J]. 机床与液压,2022,50(15):8-14. YOU Zicheng,WANG Zhigang,GUO Yufei. Research on force/position hybrid control of a vibration-based compliant drive grinding robot[J]. Machine Tool & Hydraulics,2022,50(15):8-14. [113] KATO A,OHNISHI K. Robust force sensorless control in motion control system[C]//9th IEEE International Workshop on Advanced Motion Control,Istanbul:IEEE,2006:165-170. [114] ROVEDA L,PIGA D. Interaction force computation exploiting environment stiffness estimation for sensorless robot applications[C]//2020 IEEE International Workshop on Metrology for Industry 4.0& IoT. Roma:IEEE,2020:360-363. [115] HE J,SHEN M,GAO F,et al. Active compliance control of a position-controlled industrial robot for simulating space operations[J]. Chinese Journal of Mechanical Engineering,2022,35(1):1-14. [116] MINAMI M,XU W. Shape-grinding by direct position/force control with on-line constraint estimation[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice:IEEE,2008:943-948. [117] LI H H,HAO K R,DING Y S. Force/position cooperative control for 6-dof parallel platform[J]. Advanced Materials Research,2012,479:1790-1794. [118] 唐康峻,王志刚,郭宇飞,等. 基于神经网络的打磨机器人的力/位混合控制[J]. 组合机床与自动化加工技术,2021(4):121-125. TANG Kangjun,WANG Zhigang,GUO Yufei,et al. Hybrid force/position control of grinding robot based on neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(4):121-125. [119] HUY ANH H P,SON N N,VAN KIEN C. Adaptive neural compliant force-position control of serial PAM robot[J]. Journal of Intelligent & Robotic Systems,2018,89(3):351-369. [120] LINA R G,ISELA B G,MARCO M G,et al. Adaptive force/position control of robot manipulators with bounded inputs[J]. Journal of Mechanical Science and Technology,2022,36(3):1497-1509. [121] ZHANG G J,NI F L,LIU H,et al. Learning impedance regulation skills for robot belt grinding from human demonstrations[J]. Assembly Automation,2021,41(4):431-440. [122] LUO J,SOLOWJOW E,WEN C,et al. Deep reinforcement learning for robotic assembly of mixed deformable and rigid objects[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:2062-2069. [123] SCHNECKENBURGER M,HÖFLER S,GARCIA L,et al. Material removal predictions in the robot glass polishing process using machine learning[J]. SN Applied Sciences,2022,4(1):1-14. [124] 柯贤锋,王军政,何玉东,等. 基于力反馈的液压足式机器人主/被动柔顺性控制[J]. 机械工程学报,2017,53(1):13-20. KE Xianfeng,WANG Junzheng,HE Yudong,et al. Active/passive compliance control for a hydraulic quadruped robot based on force feedback[J]. Journal of Mechanical Engineering,2017,53(1):13-20. [125] SCHIAVI R,BICCHI A,FLACCO F. Integration of active and passive compliance control for safe human-robot coexistence[C]//2009 IEEE International Conference on Robotics and Automation. Kobe:IEEE,2009:259-264. [126] 吴昌林,陈义. 铝轮曲面主被动柔顺控制抛光方法[J]. 中国机械工程,2009,20(23):2821-2824. WU Changlin,CHEN Yi. Polishing method of aluminum alloy wheel surface with active-passive compliant control[J]. China Mechanical Engineering,2009,20(23):2821-2824. [127] CHEN P,ZHAO H,YAN X,et al. Force control polishing device based on fuzzy adaptive impedance control[C]//International Conference on Intelligent Robotics and Applications,Shenyang:Springer,2019:181-194. [128] 吕睿,彭真,吕远健,等. 基于重定位的叶片机器人磨抛系统手眼标定算法[J]. 中国机械工程,2022,33(3):339-347. LÜ Rui,PENG Zhen,LÜ Yuanjian,et al. Relocalization-based hand-eye calibration algorithm for blade robotic grinding systems[J]. China Mechanical Engineering,2022,33(3):339-347. [129] 李二超,李战明,李炜. 基于视觉的机器人模糊自适应阻抗控制[J]. 中南大学学报,2011,42(2):409-413. LI Erchao,LI Zhanming,LI wei. Fuzzy adaptive impedance control of robot based on vision[J]. Journal of Central South University,2011,42(2):409-413. [130] 姬鹏飞,侯凡博,卢超. 基于视觉技术的铸件打磨机器人设计[J]. 机床与液压,2021,49(5):30-33. JI Pengfei,HOU Fanbo,LU Chao. Design of casting grinding robot based on vision technology[J]. Machine Tool & Hydraulics,2021,49(5):30-33. [131] 万国扬,王国峰,李福东,等. 基于视觉定位与轨迹规划的机器人打磨工作站[J]. 计算机集成制造系统,2021,27(1):118-127. WAN Guoyang,WANG Guofeng,LI Fudong,et al. Robotic grinding station based on visual positioning and trajectory planning[J]. Computer Integrated Manufacturing Systems,2021,27(1):118-127. |
[1] | 张小俊, 吴亚淇, 刘昊学, 钟道方. 轮足式磁吸附越障爬壁机器人设计与分析[J]. 机械工程学报, 2024, 60(1): 248-261. |
[2] | 李振, 赵欢, 王辉, 丁汉. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报, 2022, 58(9): 200-209. |
[3] | 刘志恒, 赵立军, 李瑞峰, 葛连正, 夏毅, 朱奎. 面向轮毂磨抛的手腕偏置机器人运动学快速求解方法[J]. 机械工程学报, 2022, 58(14): 126-136. |
[4] | 孟博洋, 李茂月, 刘献礼, WANG Lihui, LIANG S Y, 王志学. 机床智能控制系统体系架构及关键技术研究进展[J]. 机械工程学报, 2021, 57(9): 147-166. |
[5] | 董炳艳, 张自强, 徐兰军, 朱自虎, 杨琪, 赵京, 李德武, 陈树君. 智能应急救援装备研究现状与发展趋势[J]. 机械工程学报, 2020, 56(11): 1-25. |
[6] | 朱明, 颜步云, 石玗, 樊丁, 张刚. 单电源双丝旁路耦合电弧熔化极气体保护焊智能控制研究[J]. 机械工程学报, 2019, 55(17): 35-40. |
[7] | 陆静, 罗求发, 宋运运, 胡光球, 徐西鹏. 凝胶结合剂超细金刚石磨粒工具的制备及应用[J]. 机械工程学报, 2015, 51(15): 205-212. |
[8] | 徐西鹏;刘娟;于怡青;陆静. 凝胶结合剂磨粒工具制备及其磨抛性能研究[J]. , 2013, 49(19): 156-162. |
[9] | 张金龙;刘阳;郭怡倩;刘京南;内田敬久. 纳米级超精密定位工作台的研究[J]. , 2011, 47(9): 187-192. |
[10] | 罗勇;孙冬野;秦大同;胡建军;廖建. 基于参数统计特征的无级变速车辆智能控制策略[J]. , 2011, 47(18): 101-109. |
[11] | 陈龙;聂佳梅;汪若尘;张孝良;周孔亢. 电动助力转向与主动悬架集成系统动态性能智能控制[J]. , 2009, 45(6): 128-133. |
[12] | 谢庆华;卢涌;张琦. 电动车辆用Ni-MH电池智能化充放电控制[J]. , 2008, 44(8): 185-189. |
[13] | 郑连清;孙才新. 火工品压药压力的控制新方法[J]. , 2008, 44(6): 219-223. |
[14] | 胡旭晓;潘晓弘;何卫;陈罡. 惩罚函数的构造及多模态平稳过渡策略[J]. , 2008, 44(4): 113-117. |
[15] | 杨伟斌;陈全世;吴光强;秦大同. 双离合器式自动变速器起步的智能控制及性能仿真[J]. , 2008, 44(11): 178-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||