• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (6): 18-31.doi: 10.3901/JME.2023.06.018

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于集成自适应欠采样的铝管表面缺陷检测方法研究

郎宁1,2, 王德成1, 程鹏1   

  1. 1. 中国机械科学研究总院中机生产力促进中心有限公司 北京 100044;
    2. 湖南大学汽车车身先进设计制造国家重点实验室 长沙 410082
  • 收稿日期:2022-08-24 修回日期:2022-11-18 出版日期:2023-03-20 发布日期:2023-06-03
  • 通讯作者: 王德成(通信作者),男,1962年出生,博士,研究员,博士研究生导师。主要研究方向为可靠性分析和智能制造。E-mail:wangdc@cam.com.cn
  • 作者简介:郎宁,男,1993年出生,博士研究生。主要研究方向为机器视觉。E-mail:ninglang@hnu.edu.cn
  • 基金资助:
    国家科技重大专项资助项目(2019ZX04021001)。

Research on Surface Defect Detection Method of Aluminum Tube Based on Ensemble Adaptive Undersampling

LANG Ning1,2, WANG Decheng1, CHENG Peng1   

  1. 1. China Productivity Centre for Machinery, China Academy of Machinery Science and Technology, Beijing 100044;
    2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
  • Received:2022-08-24 Revised:2022-11-18 Online:2023-03-20 Published:2023-06-03

摘要: 铝管作为一种常见的传输零件,对其表面缺陷进行检测是保证其生产质量、运行安全的必要措施。基于机器视觉的铝管表面缺陷检测方法因其检测精度高、速度快等优点,已取代人工检测,成为主流检测方法之一。但由于缺陷样本与背景样本之间分布不平衡,导致分类器决策边界偏移、检测精度下降,限制了其应用范围。针对这一问题,提出一种基于集成自适应欠采样的铝管表面缺陷检测方法,首先利用支持向量描述方法对数据分布间的重叠区域进行识别,其次通过构建样本局部密度关系自适应确定欠采样对象及数量,最终利用随机空间生成技术同时对数据样本空间和特征空间进行优化。试验结果表明,所提方法在铝管表面缺陷数据集上识别精确率达到98.52%,优于其他先进检测方法。

关键词: 表面缺陷检测, 支持向量描述, 自适应欠采样, 随机空间生成技术

Abstract: As a standard transmission part, aluminum tube surface defect detection is necessary to ensure product quality and operation safety. The surface defect detection method based on machine vision for aluminum tubes has replaced the manual detection method and become one of the mainstream detection methods due to its metrics such as high detection accuracy and fast detection speed. However, the imbalanced distribution between defective and background samples leads to the shift of the classifier decision boundary, and a decrease in detection accuracy, which limits its application range. To solve this problem, a surface defect detection method of aluminum tube based on ensemble adaptive undersampling is proposed. Firstly, the support vector data description method is used to identify the overlapping areas in the data distribution. Secondly, the local density relationship is utilized to determine which and how many majority samples are to be removed. Finally, the random space generation technology is used to optimize the sample distribution space and feature space simultaneously. The experimental results show that the Precision of the proposed method is 98.52%, which is superior to other advanced detection methods.

Key words: surface defect detection, support vector data description, adaptive undersampling, random space generation

中图分类号: