[1] LUO Q, FANG X, LIU L, et al.Automated visual defect detection for flat steel surface:A survey[J].IEEE Transactions on Instrumentation and Measurement, 2020, 69(3):626-644. [2] SONG G, SONG K, YAN Y.EDRNet:Encoder-decoder residual network for salient object detection of strip steel surface defects[J].IEEE Transactions on Instrumentation and Measurement, 2020, 69(12):9709-9719. [3] HE Y, SONG K, MENG Q, et al.An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J].IEEE Transactions on Instrumentation and Measurement, 2019, 69(4):1493-1504. [4] LI H, ZHU B, CHEN Z, et al.Realtime in-plane displacements tracking of the precision positioning stage based on computer micro-vision[J].Mechanical Systems and Signal Processing, 2019, 124:111-123. [5] WANG H, ZHANG J, TIAN Y, et al.A simple guidance template-based defect detection method for strip steel surfaces[J].IEEE Transactions on Industrial Informatics, 2019, 15(5):2798-2809. [6] FU G, SUN P, ZHU W, et al.A deep-learning-based approach for fast and robust steel surface defects classification[J].Optics and Lasers in Engineering, 2019, 121:397-405. [7] ZHENG X, ZHENG S, KONG Y, et al.Recent advances in surface defect inspection of industrial products using deep learning techniques[J].The International Journal of Advanced Manufacturing Technology, 2021, 113:35-58. [8] ZHANG S, ZHANG Q, GU J, et al.Visual inspection of steel surface defects based on domain adaptation and adaptive convolutional neural network[J].Mechanical Systems and Signal Processing, 2021, 153:107541. [9] 姜洪权, 贺帅, 高建民, 等.一种改进卷积神经网络模型的焊缝缺陷识别方法[J].机械工程学报, 2020, 56(8):235-242.JIANG Hongquan, HE Shuai, GAO Jianmin, et al.An improved convolutional neural network for weld defect recognition[J].Journal of Mechanical Engineering, 2020, 56(8):235-242. [10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[J].Advances in Neural Information Processing Systems, 2014, 3:2672-2680. [11] JIN Q, LIN R, YANG F.E-WACGAN:Enhanced generative model of signaling data based on WGAN-GP and ACGAN[J].IEEE Systems Journal, 2019, 14(3):3289-3300. [12] 黄南天, 杨学航, 蔡国伟, 等.采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J].中国电机工程学报, 2020, 40(2):563-573.HUANG Nantian, YANG Xuehang, CAI Guowei, et al.A deep adversarial diagnosis method for wind turbine main bearing fault with imbalanced small sample scenarios[J].Proceedings of the CSEE, 2020, 40(2):563-573. [13] SUN G, DING S, SUN T, et al.SA-CapsGAN:Using capsule networks with embedded self-attention for generative adversarial network[J].Neurocomputing, 2021, 423(5):399-406. [14] BEKKER J, DAVIS J.Learning from positive and unlabeled data:A survey[J].Machine Learning, 2020, 109(4):719-760. [15] GUO T, XU C, HUANG J, et al.On positive-unlabeled classification in GAN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020:8382-8390. [16] 王坤峰, 苟超, 段艳杰, 等.生成式对抗网络GAN的研究进展与展望[J].自动化学报, 2017, 43(3):321-332.WANG Kunfeng, GOU Chao, DUAN Yanjie, et al.Generative adversarial networks:The state of the art and beyond[J].Acta Automatica Sinica, 2017, 43(3):321-332. [17] LIU F, XU M, LI G, et al.Adversarial symmetric GANs:Bridging adversarial samples and adversarial networks[J].Neural Networks, 2021, 133:148-156. [18] DONG H, SONG K, HE Y, et al.PGA-Net:Pyramid feature fusion and global context attention network for automated surface defect detection[J].IEEE Transactions on Industrial Informatics, 2020, 16(12):7448-7458. [19] LI X, ZHANG W, DING Q, et al.Multi-Layer domain adaptation method for rolling bearing fault diagnosis[J].Signal Processing, 2019, 157:180-197. [20] LI X, CHANG D, MA Z, et al.OSLNet:Deep small-sample classification with an orthogonal softmax layer[J].IEEE Transactions on Image Processing, 2020, 29:6482-6495. [21] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Precup D, Teh YW (eds) Proceedings of the 34th International Conference on Machine Learning, PMLR, International Convention Centre, Sydney, Australia.Proceedings of Machine Learning Research, 2017, 70:214-223. [22] GULRAJANI I, AHMED F, ARJOVSKY M, et al.Improved training of Wasserstein GANs[C]//Proceedings of the 2017 Advances in Neural Information Processing Systems.Long Beach, CA, USA, Curran Associates, Inc, 2017:5767-5777. [23] TRAN N T, TRAN V H, NGUYEN N B, et al.On data augmentation for GAN training[J].IEEE Transactions on Image Processing, 2021, 30:1882-1897. |