[1] WEN Long,LI Xinyu,GAO Liang. A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification[J]. IEEE Transactions on Industrial Electronics,2021,68(12):12890-12900. [2] 雷亚国,许学方,蔡潇,等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报,2021,57(4):1-9. LEI Yaguo,XU Xuefang,CAI Xiao,et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering,2021,57(4):1-9. [3] 陈祝云,钟琪,黄如意,等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报,2021,57(21):96-105. CHEN Zhuyun,ZHONG Qi,HUANG Ruyi,et al. Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J]. Journal of Mechanical Engineering,2021,57(21):96-105. [4] XING Saibo,LEI Yaguo,WANG Shuhui,et al. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions[J]. IEEE Transactions on Industrial Electronics,2021,68(3):2617-2625. [5] 邵海东,张笑阳,程军圣,等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报,2020,56(9):84-90. SHAO Haidong,ZHANG Xiaoyang,CHENG Junsheng,et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering,2020,56(9):84-90. [6] GAO Yiping,GAO Liang,LI Xinyu,et al. A zero-shot learning method for fault diagnosis under unknown working loads[J]. Journal of Intelligent Manufacturing,2020,31(4):899-909. [7] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems,2014,3:2672-2680. [8] SHAO Siyu,WANG Pu,YAN Ruqiang,et al. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry,2019,40(9):16-26. [9] DAI Jun,WANG Jun,HUANG Weiguo,et al. Machinery health monitoring based on unsupervised feature learning via generative adversarial networks[J]. IEEE/ASME Transactions on Mechatronics,2020,25(5):2252-2263. [10] 肖雄,肖宇雄,张勇军,等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报,2021,41(2):738-749. XIAO Xiong,XIAO Yuxiong,ZHANG Yongjun,et al. Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE,2021,41(2):738-749. [11] WANG Rugen,ZHANG Shaohui,CHEN Zhuyun,et al. Enhanced generative adversarial network for extremely imbalanced fault diagnosis of rotating machine[J]. Measurement,2021,180:109467. [12] LIU Shaowei,JIANG Hongkai,WU Zhenghong,et al. Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis[J]. Mechanical Systems and Signal Processing,2022,163:108139. [13] HE Zhiyi,SHAO Haidong,ZHONG Xiang,et al. An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE[J]. Advanced Engineering Informatics,2020,46:101150. [14] LI Xin,SHAO Haidong,JIANG Hongkai,et al. Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system under time-varying speeds[J]. Structural Health Monitoring,2022,21(2):339-353. [15] 陈是扦,彭志科,周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报,2020,56(17):91-107. CHEN Shiqian,PENG Zhike,ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering,2020,56(17):91-107. [16] AMIN N,AMIN T G,MAHMOUD O,et al. Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images[J]. Applied Thermal Engineering,2019,163:114410. [17] JANSSENS O,VAN DE WALLE R,LOCCUFIER M,et al. Deep learning for infrared thermal image based machine health monitoring[J]. IEEE-ASME Transactions on Mechatronics,2018,23(1):151-159. [18] JIA Zhen,LIU Zhenbao,VONG ChiMan,et al. A rotating machinery fault diagnosis method based on feature learning of thermal images[J]. IEEE Access,2019,7:12348-12359. [19] LI Yongbo,DU Xiaoqiang,WAN Fangyi,et al. Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging[J]. Chinese Journal of Aeronautics,2020,33(2):427-438. [20] CHOUDHARY A,MIAN T,FATIMA S. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images[J]. Measurement,2021,176:109196. [21] MAO Gang,ZHANG Zhongzheng,QIAO Bin,et al. Fusion domain-adaptation cnn driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions[J]. Entropy,2022,24(1):119. [22] ARJOVSKY M,BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL].[2017-01-17],https://arxiv.org/abs/1701.04862. [23] ZHANG H,GOODFELLOW I,METAXAS D. Self-attention generative adversarial networks[EB/OL].[2018-05-21],https://arxiv.org/abs/1805.08318. [24] ARJOVSKY M,CHINTALA S,BOTTOU L. Wasserstein GAN[EB/OL].[2017-01-26],https://arxiv.org/abs/1701.07875. [25] GULRAJANI I,AHMED F,ARJOVSKY M,et al. Improved training of Wasserstein GANs[EB/OL].[2017-05-31],https://arxiv.org/abs/1704.00028. [26] SUN Guangcong,DING Shifei,SUN Tongfeng,et al. SA-CapsGAN:Using capsule networks with embedded self-attention for generative adversarial network[J]. Neurocomputing,2021,423:399-406. [27] YANG Weijun,PANG Chengxin,HUANG Jinhai,et al. Sequence-to-point learning based on temporal convolutional networks for nonintrusive load monitor-ing[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:2512910. [28] LI Wei,ZHONG Xiang,SHAO Haidong,et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics,2022,52:101552. [29] LI Yongbo,WANG Xianzhi,SI Shubin,et al. A new intelligent fault diagnosis method of rotating machinery under varying-speed conditions using infrared thermography[J]. Complexity,2019,2019(2):2619252. [30] YANG Bin,LEI Yaguo,JIA Feng,et al. A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines[J]. IEEE Transactions on Industrial Electronics,2020,67(11):9747-9757. [31] 孟宗,关阳,潘作舟,等. 基于二次数据增强和深度卷积的滚动轴承故障诊断研究[J]. 机械工程学报,2021,57(23):106-115. MENG Zong,GUAN Yang,PAN Zuozhou. Fault diagnosis of rolling bearing based on secondary data enhancement and deep convolutional network[J]. Journal of Mechanical Engineering,2021,57(23):106-115. |