[1] ROSENBERG Z,VAYIG Y. On the friction effect in the perforation of metallic plates by rigid projectiles[J]. International Journal of Impact Engineering,2021,149:103794. [2] CAMACHO G T,ORTIZ M. Adaptive lagrangian modelling of ballistic penetration of metallic targets[J]. Computer Methods in Applied Mechanics and Engineering,1997,142:269-301. [3] TENG X,WIERZBICKI T. Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics,2006,73:1653-1678. [4] DEY S,BØRVIK T,HOPPERSTAD O S,et al. On the influence criterion in projectile impact of steel plates[J]. Computational Materials Science,2006,38:176-191. [5] KONG D,REN L,YANG B,et al. Comparative study of uncoupled ductile-fracture models on fracture prediction of structural steels under monotonic loading[J]. Journal of Engineering Mechanics,2020,146(8):04020080. [6] IQBAL M A,DIWAKAR A,RAJPUT A,et al. Influence of projectile shape and incidence angle on the ballistic limit and failure mechanism of thick steel plates[J]. Theoretical and Applied Fracture Mechanics,2012,62:40-53. [7] SENTHIL K,IQBAL M A. Prediction of superior target layer configuration of armour steel,mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile[J]. Structures,2021,29:2106-2119. [8] MOHR D,MARCADET S J. Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities[J]. International Journal of Solids and Structures,2015,67-68:40-55. [9] LOU Y,YOON J W,HUH H,et al. Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio[J]. International Journal of Mechanical Sciences,2018,146-147:583-601. [10] XIAO X,WANG Y,VERSHININ V V,et al. Effect of Lode angle in predicting the ballistic resistance of Weldox 700 E steel plates struck by blunt projectiles[J]. International Journal of Impact Engineering,2019,128:46-71. [11] 肖新科,陈琳,杜太生. 7075-T651铝合金靶板剪切冲塞的试验和数值模拟研究[J]. 振动与冲击,2019,38(3):51-58. XIAO Xinke,CHEN Lin,DU Taisheng. Tests and simulation for shear plugging of 7075-T651 aluminum alloy targets[J]. Journal of Vibration and Shock,2019,38(3):51-58. [12] Wang Y,Chen X,Xiao X,et al. Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes[J]. International Journal of Impact Engineering,2020,139:103498. [13] DENG Y,ZHANG Y,XIAO X,et al. Experimental and numerical study on the ballistic impact behavior of 6061-T651 aluminum alloy thick plates against blunt-nosed projectiles[J]. International Journal of Impact Engineering,2020,144:103659. [14] DENG Y,HU A,XIAO X,et al. Experimental and numerical investigation on the ballistic resistance of ZK61m magnesium alloy plates struck by blunt and ogival projectiles[J]. International Journal of Impact Engineering,2021,158:104021. [15] RODRIGUEZ M M,GARCIA G D,RUSINEK A,et al. Perforation of mechanics of 2024 aluminum protective plates subjected to impact by different nose shapes of projectiles[J]. Thin-Walled Structures,2018,123:1-10. [16] GUPTA N K,IQBAL M A,SEKHON G S. Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt-and hemispherical-nosed projectile[J]. International Journal of Impact Engineering,2006,32(12):1921-1944. [17] 邓云飞,张永,吴华鹏,等. 6061-T651铝合金动态力学性能及J-C本构模型的修正[J]. 机械工程学报,2020,56(20):74-81. DENG Yunfei,ZHANG Yong,WU Huapeng,et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy[J]. Journal of Mechanical Engineering,2020,56(20):74-81. [18] WEN H J,MAHMOUD H. New model for ductile fracture of metal alloys. I:Monotonic loading[J]. Journal of Engineering Mechanics,2016,142(2):1-15. [19] XIAO X,MU Z,PAN H,et al. Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods[J]. International Journal of Impact Engineering,2018,120:185-201. [20] BAI Y,WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture,2010,161:1-20. [21] BØRVIK T,HOPPERSTAD O S,BERSTAD T,et al. A computational model of viscoplasticity and ductile damage for impact and penetration[J]. European Journal of Mechanics,2001,20(5):685-712. [22] 肖毅华,吴和成,朱爱华,等. 旋转对卵形弹侵彻钢板影响的FEM-SPH耦合模拟[J]. 高压物理学报,2019,33(5):055103. XIAO Yihua,WU Hecheng,ZHU Aihua,et al. Effect of rotation on penetration of steel plate by ogival projectile using coupled FEM-SPH simulation[J]. Chinese Journal of High Pressure Physics,2019,33(5):055103. [23] IPSON T W,RECHT R F. Ballistic-penetration resistance and its measurement[J]. Experimental Mechanics,1975,15(7):249-257. [24] DEY S,BØRVIK T,HOPPERSTAD O S,et al. The effect of target strength on the perforation of steel plates using three different projectiles nose shapes[J]. International Journal of Impact Engineering,2004,30:1005-1038. [25] 钱凌云,纪婉婷,王小灿,等. 不同应力状态下的高强度钢板断裂机理及预测[J]. 机械工程学报,2020,56(24):72-80. QIAN Lingyun,JI Wanting,WANG Xiaocan,et al. Research on fracture mechanism and prediction of high-strength steel sheet under different stress states[J]. Journal of Mechanical Engineering,2020,56(24):72-80. [26] 叶继红,范志鹏. 基于微观机制的复杂应力状态下钢材韧性断裂行为研究[J]. 工程力学,2021,38(5):38-49. YE Jihong,FAN Zhipeng. Ductile fracture behavior of steel under complex stress state based on microscopic mechanism[J]. Engineering Mechanics,2021,38(5): 38-49. [27] 王仲仁. Lode参数的物理实质及其对塑性流动的影响[J]. 固体力学学报,2006,27(3):277-282. WANG Zhongren. Physical nature of Lode parameter and its effect on plastic flow[J]. Acta Mechanica Solida Sinica,2006,27(3):277-282. [28] PENG Z,ZHAO H,LI X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality[J]. International Journal of Plasticity,2021,145:103057. [29] LIU L,ZHENG Q,ZHU J,et al. Effects of stress triaxiality and Lode angle parameter on ductile fracture in aluminum alloy[J]. Rare Metal Materials and Engineering,2019,48(2):433-439. [30] LOU Y,YOON J W,HUH H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J]. International Journal of Plasticity,2014,54:56-80. [31] JOHNSON G R,COOK W H. Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48. [32] PARTOVI A,SHAHZAMANIAN M M,WU P. Effect of strain rate sensitivity on fracture of laminated rings under dynamic compressive loading[J]. Materials,2022,15:472. [33] ULLAH I,ZHANG S,ZHANG Q,et al. Numerical investigation on serrated chip formation during high-speed milling of Ti-6Al-4V alloy[J]. Journal of Manufacturing Processes,2021,71:589-603. |