[1] BIGGS W. The brittle fracture of steel[M]. London:MacDonald and Evans,1960. [2] CAMPBELL G,LAHEY R. A survey of serious aircraft accidents involving fatigue fracture[J]. International Journal of Fatigue,1984,6(1):25-30. [3] SEIFE C. Columbia disaster underscores the risky nature of risk analysis[J]. Science,2003,299(5609):1001-1002. [4] ANDERSON W. An engineer views brittle fracture history[R]. Boeing Reports,1969. [5] BOYD D. A review of general aviation safety (1984-2017)[J]. Aerospace Medicine and Human Performance,2017,88(7):657-664. [6] Aviation safety database[EB/OL].[2020-08-30]. https://aviation-safety.net/. [7] YU M. Advances in strength theories for materials under complex stress state in the 20th century[J]. Applied Mechanics Reviews,2002,55(3):169-218. [8] SCHIJVE J. Fatigue of structures and materials in the 20th century and the state of the art[J]. International Journal of Fatigue,2003,25(8):679-702. [9] GALLAGHER J,GIESSLER F,BERENS A,et al. USAF damage tolerant design handbook:Guidelines for the analysis and design of damage tolerant aircraft structures[M]. Fairborn:Wright Patterson AFB,1984. [10] 陈一坚. 飞机结构耐久性及损伤容限设计手册第二册-飞机结构的疲劳分析[M]. 西安:航空航天工业部科学设计研究院,1989. CHEN Yijian. Design handbook of Durability and damage tolerance of aircraft structure (Volume 2)-Fatigue analysis of aircraft structure[M]. Xi'an:Institute of Scientific design and Research affiliated to Ministry of Aviation and Aerospace of China,1989. [11] BENTHEM J P. State of stress at the vertex of a quarter-infinite crack in a half-space[J]. International Journal of Solids and Structures,1977,13(5):479-492. [12] BAŽANT Z,ESTENSSORO L. Surface singularity and crack propagation[J]. International Journal of Solids and Structures,1979,15(5):405-426. [13] POOK L. Some implications of corner point singularities[J]. Engineering Fracture Mechanics,1994,48(3):367-378. [14] LI Y,WANG Z. High-order asymptotic field of tensile plane-strain nonlinear crack problems[J]. Scientia Sinica,Series A-Mathematical,Physical,Astronomical and Technical Sciences,1986,29:941-955. [15] 郭万林. 三维断裂和疲劳裂纹扩展[D]. 西安:西北工业大学,1991. GUO Wanlin. Three-dimensional Fracture and fatigue crack propagation[D]. Xi'an:Northwestern Polytechnic University,1991. [16] STORESUND J,TU S. Geometrical effect on creep in cross weld specimens[J]. International Journal of Pressure Vessels and Piping,1995,62(2):179-193. [17] YAO H,XUAN F,WANG Z,et al. A review of creep analysis and design under multi-axial stress states[J]. Nuclear Engineering and Design,2007,237(18):1969-1986. [18] TAN J,TU S,WANG G,et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel[J]. Engineering Fracture Mechanics,2013,99:324-334. [19] GRIFFITH A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society,1921,A221:163-197. [20] IRWIN G. Fracture of metals[M]. Cleveland,OH:ASM,1948. [21] WILLIAMS M. On the stress distribution at the base of a stationary[J]. Journal of Applied Mechanics,1957,24:109-114. [22] RICE J. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics,1968,35(2):379-386. [23] HUTCHINSON J. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids,1968,16(1):13-31. [24] RICE J,ROSENGREN G. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids,1968,16(1):1-12. [25] MCMEEKING R,PARKS D. Elastic-plastic fracture[C]//ASTM STP,1979,668:175-194. [26] SHIH C,GERMAN M. Requirements for a one parameter characterization of crack tip fields by the HRR singularity[J]. International Journal of Fracture,1981,17(1):27-43. [27] O'DOWD N,SHIH C. Family of crack-tip fields characterized by a triaxiality parameter——I. Structure of fields[J]. Journal of the Mechanics and Physics of Solids,1991,39(8):989-1015. [28] O'DOWD N,SHIH C. Family of crack-tip fields characterized by a triaxiality parameter——II. Fracture applications[J]. Journal of the Mechanics and Physics of Solids,1992,40(5):939-963. [29] BETEGON C,HANCOCK J. Two-parameter characterization of elastic-plastic crack-tip fields[J]. Journal of Applied Mechanics,1991,58:104. [30] XIA L,WANG T,SHIH C F. Higher-order analysis of crack tip fields in elastic power-law hardening materials[J]. Journal of the Mechanics and Physics of Solids,1993,41(4):665-687. [31] SHARMA S,ARAVAS N. Determination of higher-order terms in asymptotic elastoplastic crack tip solutions[J]. Journal of the Mechanics and Physics of Solids,1991,39(8):1043-1072. [32] RIEDEL H,RICE J. Tensile cracks in creeping solids[M]. West Conshohocken,PA:ASTM International. 1980. [33] BUDDEN P,AINSWORTH R. The effect of constraint on creep fracture assessments[J]. International Journal of Fracture,1999,97(1):237. [34] NGUYEN B,ONCK P,VAN DER GIESSEN E. On higher-order crack-tip fields in creeping solids[J]. Journal of Applied Mechanics,1999,67(2):372-382. [35] NGUYEN B,ONCK P,VAN DER GIESSEN E. Crack-tip constraint effects on creep fracture[J]. Engineering Fracture Mechanics,2000,65(4):467-490. [36] YANG W,FREUND L. Transverse shear effects for through-cracks in an elastic plate[J]. International Journal of Solids and Structures,1985,21(9):977-994. [37] KONG X,SCHLÜTER N,DAHL W. Effect of triaxial stress on mixed-mode fracture[J]. Engineering Fracture Mechanics,1995,52(2):379-388. [38] YUAN H,BROCKS W. Quantification of constraint effects in elastic-plastic crack front fields[J]. Journal of the Mechanics and Physics of Solids,1998,46(2):219-241. [39] WANG G,LIU X,XUAN F,et al. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens[J]. International Journal of Solids and Structures,2010,47(1):51-57. [40] TAN J,WANG G,XUAN F,et al. Correlation of creep crack-tip constraint between axially cracked pipelines and test specimens[J]. International Journal of Pressure Vessels and Piping,2012,98:16-25. [41] XUAN F,CHEN J,WANG Z,et al. Time-dependent deformation and fracture of multi-material systems at high temperature[J]. International Journal of Pressure Vessels and Piping,2009,86(9):604-615. [42] KE J,LIU H. Thickness effect on crack tip deformation at fracture[J]. Engineering Fracture Mechanics,1976,8(2):425-426. [43] 吴学仁. 飞机结构金属材料力学性能手册[M]. 北京:航空工业出版社,1997. WU Xueren. Handbook of mechanics properties of aircraft structure metals[M]. Beijing:Aviation Industry Press,1997. [44] GUO W. Three-dimensional effects on fatigue crack growth.[C]//Proc. of Int. Conf. on Comp. Eng. Sci.,vol II Atlanta:Tech Science Press,1998,1269-1274. [45] GUO W. Fatigue crack closure under triaxial stress constraint-I. Experimental investigation[J]. Engineering Fracture Mechanics,1994,49(2):265-275. [46] GUO W,WANG C H,ROSE L R F. The influence of cross-sectional thickness on fatigue crack growth[J]. Fatigue & Fracture of Engineering Materials & Structures,1999,22(5):437-444. [47] BELLETT D,TAYLOR D,MARCO S,et al. The fatigue behaviour of three-dimensional stress concentrations[J]. International Journal of Fatigue,2005,27(3):207-221. [48] GUO W. Elastoplastic three dimensional crack border field——I. Singular structure of the field[J]. Engineering Fracture Mechanics,1993,46(1):93-104. [49] GUO W. Elastoplastic three dimensional crack border field——II. Asymptotic solution for the field[J]. Engineering Fracture Mechanics,1993,46(1):105-113. [50] GUO W. Elasto-plastic three-dimensional crack border field——III. Fracture parameters[J]. Engineering Fracture Mechanics,1995,51(1):51-71. [51] 董慧茹. 三维复合型断裂的实验研究[D]. 西安:西安交通大学,2005. DONG Huiru. Experimental study on mixed mode fracture[D]. Xi'an:Xi'an Jiaotong University,2005. [52] 佘崇民. 飞机结构的三维断裂研究[D]. 南京:南京航空航天大学,2005. SHE Chongmin. Studies on three-dimensional fracture mechanics of aircraft structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2005. [53] 赵军华. 宏观结构的三参数三维断裂研究[D]. 南京:南京航空航天大学,2008. ZHAO Junhua. Three-parameter research on three-dimensional fracture for macrostructures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2008. [54] GUO W. Recent advances in three-dimensional fracture mechanics[J]. Key Engineering Materials,2000,183-187:193-198. [55] ZHAO J,GUO W,SHE C,et al. Three dimensional K-Tz stress fields around the embedded center elliptical crack front in elastic plates[J]. Acta Mechanica Sinica,2006,22(2):148-155. [56] ZHAO J,GUO W,SHE C. The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a semi-elliptical surface crack[J]. International Journal of Fatigue,2007,29(3):435-443. [57] ZHAO J,GUO W,SHE C. The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress fields near the border of a quarter-elliptical corner crack[J]. Fatigue & Fracture of Engineering Materials & Structures,2007,30(8):673-681. [58] ZHAO J,GUO W,SHE C. Three-parameter description of the stress field near the border of an embedded elliptical crack[J]. Acta Mechanica,2007,190(1):29-44. [59] ZHAO J. Three-parameter approach for elastic-plastic stress field of an embedded elliptical crack[J]. Engineering Fracture Mechanics,2009,76(16):2429-2444. [60] GUO W,SHE C,ZHAO J,et al. Advances in three-dimensional fracture mechanics[J]. Key Engineering Materials,2006,312:27-34. [61] ZHAO J,GUO W,SHE C. Three-parameter approach for elastic-plastic fracture of the semi-elliptical surface crack under tension[J]. International Journal of Mechanical Sciences,2008,50(7):1168-1182. [62] GUO W. Three-dimensional analyses of plastic constraint for through-thickness cracked bodies[J]. Engineering Fracture Mechanics,1999,62(4-5):383-407. [63] ZHANG B,GUO W. Three-dimensional stress state around quarter-elliptical corner cracks in elastic plates subjected to uniform tension loading[J]. Engineering Fracture Mechanics,2007,74(3):386-398. [64] GONZÁLEZ-ALBUIXECH V,GINER E,FERNÁNDEZ-SÁEZ J,et al. Influence of the t33-stress on the 3-D stress state around corner cracks in an elastic plate[J]. Engineering Fracture Mechanics,2011,78(2):412-427. [65] SHLYANNIKOV V,BOYCHENKO N,TUMANOV A,et al. The elastic and plastic constraint parameters for three-dimensional problems[J]. Engineering Fracture Mechanics,2014,127:83-96. [66] NEIMITZ A,GALKIEWICZ J. Fracture toughness of structural components:influence of constraint[J]. International Journal of Pressure Vessels and Piping,2006,83(1):42-54. [67] TONGE S,SIMPSON C,REINHARD C,et al. Unifying the effects of in and out-of-plane constraint on the fracture of ductile materials[J]. Journal of the Mechanics and Physics of Solids,2020,141:103956. [68] 于振波. 航空高温材料三维蠕变断裂研究[D]. 南京:南京航空航天大学,2009. YU Zhenbo. Three-dimensional fracture in high yemperature creeping Solids[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2008. [69] XIANG M,YU Z,GUO W. Characterization of three-dimensional crack border fields in creeping solids[J]. International Journal of Solids and Structures,2011,48(19):2695-2705. [70] XIANG M,GUO W. Formulation of the stress fields in power law solids ahead of three-dimensional tensile cracks[J]. International Journal of Solids and Structures,2013,50(20):3067-3088. [71] 陈志远. 三维蠕变断裂的三参数理论研究[D]. 南京:南京航空航天大学,2015. CHEN Zhiyuan. Studies on three-parameter theory of three-dimensional creep fracture[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015. [72] CUI P,GUO W. Crack-tip-opening-displacement-based description of creep crack border fields in specimens with different geometries and thicknesses[J]. International Journal of Solids and Structures,2020,188-189:37-55. [73] CUI P,GUO W. Crack-tip-opening-displacement-based description of three-dimensional elastic-plastic crack border fields[J]. Engineering Fracture Mechanics,2020,231:107008. [74] 于培师. 含曲线裂纹结构的三维断裂与疲劳裂纹扩展模拟研究[D]. 南京:南京航空航天大学,2010. YU Peishi. Studies on three-dimensional fracture and fatigue crack growth simulation of curve cracked structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [75] GUO W,PITT S D,JONES R. Three-dimensional strength assessment for damage tolerant structures[C/CD]//Proceedings of the International Conference on Strength Theory,Xi'an,September,1998. [76] SHE C,ZHAO J,GUO W. Three-dimensional stress fields near notches and cracks[J]. International Journal of Fracture,2008,151(2):151-160. [77] YU P,SHE C,GUO W. Equivalent thickness conception for corner cracks[J]. International Journal of Solids and Structures,2010,47(16):2123-2130. [78] YU P,GUO W. An equivalent thickness conception for prediction of surface fatigue crack growth life and shape evolution[J]. Engineering Fracture Mechanics,2012,93:65-74. [79] YU P,GUO W. An equivalent thickness conception for evaluation of corner and surface fatigue crack closure[J]. Engineering Fracture Mechanics,2013,99:202-213. [80] NEWMAN J. A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading[R]. ASTM STP,1981:53-84. [81] NEWMAN J. A crack opening stress equation for fatigue crack growth[J]. International Journal of Fracture,1984,24(4):R131-R135. [82] GUO W. Three dimensional criterion for safe assessment and design of aeronautical structures-summary report[R]. Internal Report:DAR95-13A01,1996. [83] CHANG T,GUO W. A model for the through-thickness fatigue crack closure[J]. Engineering Fracture Mechanics,1999,64(1):59-65. [84] BUDIANSKY B,HUTCHINSON J. Analysis of closure in fatigue crack growth[J]. ASME,Transactions,Journal of Applied Mechanics,1978,45:267-276. [85] NEWMAN J,BIGELOW C,SHIVAKUMAR K. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies[J]. Engineering Fracture Mechanics,1993,46(1):1-13. [86] ZHU J,GUO W,GUO W. Surface fatigue crack growth under variable amplitude loading[J]. Engineering Fracture Mechanics,2020,239:107317. [87] GARDIN C,FIORDALISI S,SARRAZIN-BAUDOUX C,et al. Numerical simulation of fatigue plasticity-induced crack closure for through cracks with curved front[J]. Engineering Fracture Mechanics,2016,160:213-225. [88] ESCALERO M,MUNIZ-CALVENTE M,ZABALA H,et al. A methodology for simulating plasticity induced crack closure and crack shape evolution based on elastic-plastic fracture parameters[J]. Engineering Fracture Mechanics,2020:107412. [89] SCHIJVE J. The significance of flight-simulation fatigue tests[M]. Delft:Delft University of Technology,1985. [90] 郭万林. 航空结构损伤容限设计中的三维问题[J]. 航空学报,1995,16(2):129-136. GUO Wanlin. Three dimensional problem in damage tolerance design of aircraft structures[J]. Acta Aeronautica et Astronautica Sinica,1995,16(2):129-136. [91] NEWMAN J. The merging of fatigue and fracture mechanics concepts:A historical perspective[J]. Progress in Aerospace Sciences,1997,34(5-6):347-390. [92] NEWMAN J. FASTRAN-2:A fatigue crack growth structural analysis program[R]. STIN,1992,92:30964. [93] DE JONG J,SCHÜTZ D,LOWAK H,et al. A standardised load sequence for flight simulation tests on transport aircraft wing structures[R]. Amsterdam:National Laboratory of Research (NLR),1973. [94] NEWMAN J. Effects of constraint on crack growth under aircraft spectrum loading[R]. Hampton:Langley Research Center,1992. [95] 郭万林,张田忠. 飞机谱载荷下裂纹扩展的三维的约束效应[J]. 航空学报,2000,21(4):294-298.GUO Wanlin,ZHANG Tianzhong. Three-dimensional constraint effect of crack growth under aircraft loading spectrum[J]. Acta Aeronautica et Astronautica Sinica,2000,21(4):294-298. [96] WU S,YU C,YU P,et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science and Engineering:A,2016,651:604-614. [97] KAYNAK C,ANKARA A,BAKER T J. Initiation and early growth of short fatigue cracks at inclusions[J]. Materials Science and Technology,1996,12(5):421-426. [98] WANG Q,BERARD J,RATHERY S,et al. Technical note High-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires[J]. Fatigue & Fracture of Engineering Materials & Structures,1999,22(8):673-677. [99] WANG Q,BATHIAS C,KAWAGOISHI N,et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. International Journal of Fatigue,2002,24(12):1269-1274. [100] STANZL-TSCHEGG S. Very high cycle fatigue measuring techniques[J]. International Journal of Fatigue,2014,60:2-17. [101] GÜNTHER J,KREWERTH D,LIPPMANN T,et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue,2017,94:236-245. [102] LIU R,ZHANG P,ZHANG J,et al. A practical model for efficient anti-fatigue design and selection of metallic materials:I. Model building and fatigue strength prediction[J]. Journal of Materials Science and Technology,2021,70:233-249. [103] LIU R,ZHANG P,ZHANG J,et al. A practical model for efficient anti-fatigue design and selection of metallic materials:II. Parameter analysis and fatigue strength improvement[J]. Journal of Materials Science and Technology,2021,70:250-267. [104] 李晖,常永乐,张体南,等. 基于激光扫描法的纤维增强复合薄板损伤定位研究[J]. 机械工程学报,2019,55(18):8-14. LI Hui,CHANG Yongle,ZHANG Tinan,et al. Study on damage location detection of fiber-reinforced composite thin plate based on laser linear scanning method[J]. Journal of Mechanical Engineering,2019,55(18):8-14. [105] 王福吉,王东,殷俊伟,等. CFRP复合材料铣削表层损伤形成机制分析[J]. 机械工程学报,2019,55(13):195-204. WANG Fuji,WANG Dong,YIN Junwei,et al. Analysis of surface damage formation mechanism in milling of CFRPs[J]. Journal of Mechanical Engineering,2019,55(13):195-204. [106] 邓云飞,张永,曾宪智,等. 6061-T651铝合金动态力学性能及断裂准则修正[J]. 机械工程学报,2020,56(18):81-91. DENG Yunfei,ZHANG Yong,ZENG Xianzhi,et al. Dynamic mechanical properties and modification of fracture criteria of 6061-T651 aluminum alloy[J]. Journal of Mechanical Engineering,2020,56(18):81-91. [107] 李一磊,姚迪,乔红威,等. 金属材料中低加载速率下的动态韧脆转变及断裂韧性测量[J]. 力学学报,2021,53(2):424-436. LI Yilei,YAO Di,QIAN Hongwei,et al. Dynamic ductile-brittle transition and fracture toughness measurement of metal under intermediate-low loading velocities[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(2):424-436. [108] 侯波,崔荣洪,何宇廷,等. 同心环状薄膜传感器阵列及其飞机金属结构裂纹监测研究[J]. 机械工程学报,2015,51(24):9-14. HOU Bo,CUI Ronghong,HE Yuting,et al. Concentric ring film sensor array and its experimental research on crack monitoring for aircraft metallic structure[J]. Journal of Mechanical Engineering,2015,51(24):9-14. [109] 杨斌,胡超杰,轩福贞,等. 基于超声导波的压力容器健康监测III:纤维缠绕压力容器的在线监测[J]. 机械工程学报,2020,56(10):19-26. YANG Bin,HU Chaojie,XUAN Fuzhen,et al. Structural health monitoring of pressure vessel based on guided wave technology. Part III:Online monitoring of filament wound pressure vessel[J]. Journal of Mechanical Engineering,2020,56(10):19-26. |