机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 248-268.doi: 10.3901/JME.2021.16.248
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
陈志文1, 梅云辉2, 刘胜1,3, 李辉1, 刘俐4, 雷翔3, 周颖3, 高翔3
收稿日期:
2020-08-31
修回日期:
2021-02-05
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
刘胜(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为电子制造及系统封装,可靠性及多场多尺度问题。E-mail:shengliu@whu.edu.cn
作者简介:
陈志文,男,1987年出生,博士研究生。主要研究方向为电子封装材料力学及仿真。E-mail:zhiwen.chen@whu.edu.cn
基金资助:
CHEN Zhiwen1, MEI Yunhui2, LIU Sheng1,3, LI Hui1, LIU Li4, LEI Xiang3, ZHOU Ying3, GAO Xiang3
Received:
2020-08-31
Revised:
2021-02-05
Online:
2021-08-20
Published:
2021-11-16
摘要: 电子封装是芯片成为器件的重要步骤,涉及的材料种类繁多,大量材料呈现显著的温度相关、率相关的非线性力学行为。相关工艺过程中外界载荷与器件的相互作用呈现典型的多尺度、多物理场特点,对电子封装的建模仿真方法也提出了相应的要求。在可靠性验证方面,封装的失效主要包括热-力致耦合失效、电-热-力致耦合失效等。随着新型封装材料、技术的涌现,电子封装可靠性的试验方法、基于建模仿真的协同设计方法均亟待新的突破与发展。
中图分类号:
陈志文, 梅云辉, 刘胜, 李辉, 刘俐, 雷翔, 周颖, 高翔. 电子封装可靠性:过去、现在及未来[J]. 机械工程学报, 2021, 57(16): 248-268.
CHEN Zhiwen, MEI Yunhui, LIU Sheng, LI Hui, LIU Li, LEI Xiang, ZHOU Ying, GAO Xiang. Reliability in Electronic Packaging: Past, Now and Future[J]. Journal of Mechanical Engineering, 2021, 57(16): 248-268.
[1] LIU Sheng,LIU Yong. Modeling and simulation for microelectronic packaging assembly:Manufacturing,reliability and testing[M]. Hoboken:Wiley,2011. [2] 张志祥. 电镀镍/金生产管理实战[J]. 印制电路信息,2003(8):32-42. ZHANG Zhixiang. Production management of the plated nickel/gold[J]. Printed Circuit Information,2003(8):32-42. [3] FU Shancan, MEI Yunhui, LI Xinet al.,Parametric Study on Pressureless Sintering of Nanosilver Paste to Bond Large-Area(≥ 100mm2) Power Chips at Low Temperatures for Electronic Packaging[J]. Journal of Electronic Materials, 2015, 44:3973-3984. [4] 陈飞珺,严石,杨振国,等. 电镀镍金板无法键合金线的失效分析[J]. 复旦学报,2012,51(2):154-158. CHEN Feijun,YAN Shi,YANG Zhenguo,et al. Failure analysis of debonding of gold on electrolytic nickel and gold[J]. Journal of Fudan University,2012,51(2):154-158. [5] 崔国峰,李宁,黎德育,等. 化学镀镍和镍/金在微电子领域中的应用及展望[J]. 电镀与环保,2003,23(4):7-9. CUI Guofeng,LI Ning,LI Deyu,et al. Applications and prospects of electroless Ni and Ni/Au plating in microelectronic field[J]. Electroplating & Pollution Control,2003,23(4):7-9. [6] 杨维生. 化学镀镍金在印制电路板制造中的应用[J]. 化工新型材料,2002,30(2):24-26,33. YANG Weisheng. Application of electroless nickel and immersion gold in the manufacturing of the printed circuit board[J]. New Chemical Materials,2002,30(2):24-26,33. [7] MI Jinhua,LI Yanfeng,YANG Yuanjian, et al. Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data[J]. The Scientific World Journal,2014,2014:807693. [8] 王帅. 纳米银浆低温快速烧结机理及其接头性能研究[D]. 哈尔滨:哈尔滨工业大学. WANG Shuai. Rapid low temperature sintering mechanism of Ag nanoparticle paste and properties of the joint[D]. Harbin:Harbin Institute of Technology,2014. [9] ZHANG Q K,ZHU Q S, ZOU H F, et al. Fatigue fracture mechanisms of Cu/lead-free solders interfaces[J]. Materials Ence & Engineering A,2010,527(6):1367-76. [10] RATCHEV P,VANDEVELDE B,DE WOLF I. Reliability and failure analysis of SnAgCu solder interconnections on NiAu surface finish[C]//Proceedings of the 10th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2003,Singapore,IEEE,2003:113-116. [11] LEFRANC G,LICHT T,SCHULTZ H J,et al. Reliability testing of high-power multi-chip IGBT modules[J]. Microelectronics Reliability,2000,40(8-10):1659-1663. [12] ZURUZI A S,SIOW K S. Electrical conductivity of porous silver made from sintered nanoparticles[J]. Electronic Materials Letters,2015,11(2):308-14. [13] ZHUANG W D, CHANG F C,CHOU F Y. Effect of solder creep on the reliability of large area die attachment[J]. Microelectronics Reliability,2001,41(12):2011-2021. [14] KATSIS D C,van WYK J D. A thermal,mechanical,and electrical study of voiding in the solder die-attach of power MOSFETs[J]. IEEE Transactions on Components & Packaging Technologies,2006,29(1):127-136. [15] HERR E,FREY T,SCHLEGEL R,et al. Substrate-to-base solder joint reliability in high power IGBT modules[J]. Microelectronics Reliability,1997,37(10-11):1719-1722. [16] 阮建明,黄培云. 粉末冶金原理[M]. 北京:机械工业出版社,2012. RUAN Jianming,HUANG Peiyun. Powder metallurgy[M]. Beijing:China Machine Press,2012. [17] 果世驹. 粉末烧结理论[M]. 北京:冶金工业出版社,1998. GUO Shiju. Powder sintering theory[M]. Beijing:Metallurgical Industry Press,1998. [18] 王征,刘文,梅云辉,等. 宽禁带电力电子器件关键封装材料研究进展[J]. 电力电子技术,2017,51(8):88-91. WANG Zheng,LIU Wen,MEI Yunhui,et al. Review on key packaging materials for wide-band-gap powder semiconductors[J]. Power Electronics,2017,51(8):88-91. [19] GRUMMEL, MUSTAIN,SHEN,et al. Reliability study of Au-In transient liquid phase bonding for SiC power semiconductor packaging[C/CD]//Proceedings of the IEEE International Symposium on Power Semiconductor Devices & Ics,2011. [20] AASMUNDTVEIT KE,LUU T T,NGUYEN H V,et al. Au-Sn fluxless SLID bonding:Effect of bonding temperature for stability at high temperature,above 400℃[C/CD]//Proceedings of the Electronic System-integration Technology Conference,2010. [21] LIU Baolei,TIAN Yanhong,WANG Chenxi,et al. Ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current[J]. Intermetallics,2017,80:26-32. [22] LIU Baolei,TIAN Yanhong,WANG Chenxi,et al. Extremely fast formation of CuSn intermetallic compounds in Cu/Sn/Cu system via a micro-resistance spot welding process[J]. Journal of Alloys and Compounds,2016,687:667-673. [23] YANG Cheng-xiang, LI Xin,KONG Ya-fei,MEI Yun-hui, LU Guo-quan, High Power COB LED Modules Attached by Nanosilver Paste[J].Chinese Journal of Luminescence, 2016, 37(1):94-99. [24] BAI Guofeng. Low -temperature sintering of nanoscale silver paste for semiconductor device interconnection[D]. Virginia:Virginia Polytechnic Institute and State University, 2005 [25] YASUDA Yusuke, IDE Eiichi, MORITA Toshiaki, Low-Temperature Bonding Using Silver NanoparticlesStabilized by Short-Chain Alkylamines[J]. Japanese Journal of Applied Physics, 2009, 48:125004. [26] YASUDA Yusuke, IDE Eiichi, MORITA Toshiaki, Low-Temperature Bonding of Silver Derived from SilverOxide Particles to Nickel[J]. Materials Transactions, 2013, 54(6):1063-1065 [27] 严石,陈飞珺,杨振国,等. 化学镍金(ENIG)表面浸润性不良的失效分析[J]. 复旦学报,2012,51(2):110-113,139. YAN Shi,CHEN Feijun,YANG Zhenguo, et al. Failure analysis of electroless ENIG by poor surface wetting[J]. Journal of Fudan University,2012,51(2):110-113,139. [28] HUNG T Y,HUANG C J,LEE C C,et al. Investigation of solder crack behavior and fatigue life of the power module on different thermal cycling period[J]. Microelectronic Engineering,2013,107:125-129. [29] LU Guoquan,LIWanli,MEI Yunhui, et al. Characterizations of Nanosilver Joints by Rapid Sintering at Low Temperature for Power Electronic Packaging[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(2):623-629. [30] Lu GQ, Lei GY, Calata JN. U. S. Patent 4273833, 2009. [31] WANG Xiaoye, Study on Technological Properties of High-performance Metallo-organic-decomposition Silver Paste without Solid or Particle Phase[D]. Wuhan:Huazhong University of Science and Technology, 2011. [32] ALLEN M.L., ARONNIEMI M., MATTILA T., ALASTALO A.,et al., Electrical sintering of nanoparticle structures[J]. Nanotechnology, 2008, 19(17):175201 [33] CAO Yunjiao, Investigation on Current-Assisted Sintering Nanosilver Paste for Die Attachment and Joint Reliability[D]. Tianjin:Tianjin University, 2013. [34] GATES T S,ODEGARD G M,FRANKLAND S J V. Computational materials:Multi-scale modeling and simulation of nanostructured materials[J]. Composites Ence & Technology,2005,65(15-16):2416-2434. [35] HAIPING Y U,CHUNFENG L I,JIANGHUA D E N G. Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis[J]. Journal of Materials Processing Tech.,2009,209(2):707-713. [36] LIU Sheng,GAN Zhiyin,LUO Xiaobing,et al. Multi-physics multi-scale modeling issues in LED[C/CD]//Proceedings of the IcemInternational Conference on Experimental Mechanics,2009. [37] ALAN M. Solid state lighting:A world of expanding opportunities at LED 2002[J]. III Vs Review,2003,16(1):30-33. [38] LIU Sheng,WANG Kai,LIU Zongyuan,et al. Roadmap for LED packaging development:A personal view[C]//5th China International Forum on Solid State Lighting. Shenzhen,China,2008:396-440. [39] LIU Sheng,MEI Yuhai. Behavior of delaminated plastic IC packages subjected to encapsulation cooling,moisture absorption,and wave soldering[J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part A,1995,18(3):634-645. [40] TAN LX,LI J,LIU S,et al. Effect of defects on thermal and optical performance of high power LEDs[C]//4th China International Forum on Solid State Lighting,Shanghai,PR China,2007:304-309. [41] 罗文功. BGA封装的热应力分析及其热可靠性研究[D]. 西安:西安电子科技大学. LUO Wengong. Analysis on thermal stress and thermal reliability of BGA packaging[D]. Xi'an:Xidian University,2009. [42] ADIBI-ASL R, REINHARDT W. Non-cyclic shakedown/ratcheting boundary determination-part 2:numerical implementation[J]. International Journal of Pressure Vessels & Piping,2011,88(8-9):321-329. [43] ADIBI-ASL R,REINHARDT W. Non-cyclic shakedown/ratcheting boundary determination-part 1:analytical approach[J]. International Journal of Pressure Vessels & Piping,2011,88(8-9):311-320. [44] WANG Tao,CHEN Gang,WANG Yanping,et al. Uniaxial ratcheting and fatigue behaviors of low-temperature sintered nano-scale silver paste at room and high temperatures[J]. Materials Science & Engineering,A Structural Materials:Properties,Misrostructure and Processing,2010,527(27-28):6714-6722. [45] QIAN Zhengfang,REN Wei,LIU Sheng. A damage coupling framework of unified viscoplasticity for the fatigue of solder alloys[J]. Journal of Electronic Packaging,1999,121(3):162-168. [46] REN Wei,QIAN Zhengfang,LIU Sheng. Thermo-mechanical creep of two solder alloys[C/CD]//Proceedings of the 1998 Proceedings 48th Electronic Components and Technology Conference (Cat No98CH36206),25-28 May 1998,1998. [47] QIAN Zhengfang,LU Minfu,LIU Sheng. Fatigue life prediction of flip-chips in terms of nonlinear behavior of solder and underfill[C/CD]//Proceedings of the 1999 Proceedings 49th Electronic Components and Technology Conference (Cat No99CH36299),1-4 June 1999,1999. [48] WANG Jiajun,QIAN Zhengfang,ZOU Daqing,et al. Creep behavior of a flip-chip package by both FEM modeling and real time Moirex interferometry[J]. Journal of Electronic Packaging,1998,120(2):179-185. [49] QIAN Zhengfang,WANG Jianjun,YANG Jian,et al. Visco-elastic-plastic properties and constitutive modeling of underfills[J]. IEEE Transactions on Components and Packaging Technologies,1999,22(2):152-157. [50] LU Minfu,QIAN Zhengfang,REN Wei,et al. Investigation of electronic packaging materials by using a 6-axis mini thermo-mechanical tester[J]. International Journal of Solids and Structures,1999,36(1):65-78. [51] REN Wei,WANG Jianjun,QIAN Zhengfang,et al. Investigation of nonlinear behaviors of packaging materials and its application to a flip-chip package[C/CD]//proceedings of the Proceedings International Symposium on Advanced Packaging Materials Processes,Properties and Interfaces (IEEE Cat No99TH8405),14-17 March 1999,1999. [52] CHEN Gang,CHEN Xu. Constitutive and damage model for 63Sn37Pb solder under uniaxial and torsional cyclic loading[J]. International journal of solids and structures,2006,43(43):3596-3612. [53] CHEN Gang,CHEN Xu,NIU Changdong. Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates[J]. Materials Ence & Engineering A,2006,421(1-2):238-244. [54] CHEN Xu,SONG Jie,KIM K S. Fatigue life of 63Sn-37Pb solder related to load drop under uniaxial and torsional loading[J]. International Journal of Fatigue,2006,28(7):767-776. [55] AMALU E H,EKERE N N. High temperature reliability of lead-free solder joints in a flip chip assembly[J]. Journal of Materials Processing Tech.,2011,212(2):471-483. [56] MA Jian,GAO Hong,GAO LiLan,et al. Uniaxial ratcheting behavior of anisotropic conductive adhesive film at elevated temperature[J]. Polymer Testing,2011,30(5):571-577. [57] TAN C M,CHAN Y C,YEUNG N H. Behaviour of anisotropic conductive joints under mechanical loading[J]. Microelectronics Reliability,2003,43(3):481-486. [58] 陈岩,郭宏,李秀清. 美国高温微系统封装技术现状[J]. 半导体技术,2009,34(3):210-213,278. CHEN Yan,GUO Hong,LI Xiuqing. Overview of high temperature micro-system packaging technology in America[J]. Semiconductor Technology,2009,34(3):210-213,278. [59] CHEN Xu,LI Rong,QI Kun,et al. Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste[J]. Journal of Electronic Materials,2008,37(10):1574. [60] WANG Tao,CHEN Xu,LU Guoquan,et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials,2007,36(10):1333-1340. [61] 李欣. 纳米银焊膏搭接接头力学性能研究[D]. 天津:天津大学,2012. LI Xin. A study of mechanical property for nano-silver sintered lap shear joint[D]. Tianjin:Tianjin University,2012. [62] 齐昆. 纳米银焊膏低温烧结粘接可靠性研究[D].天津:天津大学,2007. QI Kun. A study of interconnection reliability for low-temperature sintered nano-silver paste[D]. Tianjin:Tianjin University,2007. [63] QI Kun,CHEN Xu,LU Guoquan. Effect of interconnection area on shear strength of sintered joint with nano-silver paste[J]. Soldering & Surface Mount Technology,2008,20(1):8-12. [64] 曹云娇. 电流烧结纳米银焊膏连接工艺研究及接头可靠性[D]. 天津:天津大学,2013. CAO Yunjiao. Investigation on current-assisted sintering nanosilver paste for die attachment and joint reliability[D]. Tianjin:Tianjin University,2013. [65] CHEN Gang,ZHANG Zesheng,MEI Yunhui,et al. Ratcheting behavior of sandwiched assembly joined by sintered nanosilver for power electronics packaging[J]. Microelectronics Reliability,2013,53(4):645-651. [66] 张琨健. 大功率白光LED荧光粉涂覆方法研究[D].哈尔滨:哈尔滨工业大学,2010. ZHANG Kunjian. Study on phosphor coating for high power LED packaging[D]. Harbin:Harbin Institute of Technology,2010. [67] TRAN N T,SHI F G. Simulation and experimental studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes[C/CD]//Proceedings of the Microsystems,Packaging,Assembly and Circuits Technology,IMPACT 2007 International,2007. [68] LUO Xiaobing,FU Xing,CHEN Fei,et al. Phosphor self-heating in phosphor converted light emitting diode packaging[J]. International Journal of Heat Mass Transfer,2013,58(1-2):276-281. [69] HUANG Min,YANG Liyu. Heat generation by the phosphor layer of high-power white LED emitters[J]. IEEE Photonics Technology Letters,2013,25(14):1317-1320. [70] SCHWEITZER S,SOMMER C,HARTMANN P,et al. Improvement of color temperature constancy of phosphor converted LEDs by adaption of the thermo-optic coefficients of the color conversion materials[J]. IEEE/OSA Journal of Display Technology,2013,9(6):413-418. [71] VITTA P,POBEDINSKAS P,ZUKAUSKAS A. Phosphor thermometry in white light-emitting diodes[J]. IEEE Photonics Technology Letters,2007,19(6):399-401. [72] 吕植成. 基于硅基板的大功率LED封装研究[D]. 武汉:华中科技大学,2013. LV Zhicheng. Research on high power LED packaging based on silicon substrate[D]. Wuhan:Huazhong University of Science and Technology,2013. [73] SMET P F,PARMENTIER A B,POELMAN D. Selecting conversion phosphors for white light-emitting diodes[J]. Journal of the Electrochemical Society,2011,158(6):37-54. [74] LIU Zongyuan,LIU Sheng,WANG Kai,et al. Optical analysis of color distribution in white LEDs with various packaging methods[J]. IEEE Photonics Technology Letters,2008,20(24):2027-2029. [75] 郑怀. 大功率LED封装工艺中流动分析及其工程应用[D]. 武汉:华中科技大学,2014. ZHENG Huai. Flow analysis in packaging processes ofhigh-power light-emitting diodes and its engineering applications[D]. Wuhan:Huazhong University of Science and Technology,2014. [76] COLLINS III,WILLIAM D,KRAMES M R,et al. Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor:US,6576488[P]. 2003-6-10. [77] LOH B P,MEDENDORP N W,ANDREWS P,et al. Method of uniform phosphor chip coating and LED package fabricated using method:US,7943952B2[P]. 2011-5-17. [78] BRAUNE B,PETERSEN K,STRAUSS J,et al. A new wafer level coating technique to reduce the color distribution of LEDs[C/CD]//Proceedings of the Integrated Optoelectronic Devices,2007. [79] YUM J H,SEO S Y,LEE S,et al. Comparison of Y3Al5O12:Ce0.05 phosphor coating methods for white-light-emitting diode on gallium nitride[C/CD]//Proceedings of the International Symposium on Optical Science & Technology,2001. [80] HOU Bin,RAO Haibo,LI Junfei. Methods of increasing luminous efficiency of phosphor-converted LED realized by conformal phosphor coating[J]. Journal of Display Technology,2009,5(2):57-60. [81] LI Junfei,RAO Haibo,HOU Bin, et al. Improving the luminescence efficiency of power white LEDs with slurry[J]. Journal of Semiconductors,2008,29(5):984-987. [82] LI Zongtao,TANG Yong,LIU Zongyuan,et al. Detailed study on pulse-sprayed conformal phosphor configurations for LEDs[J]. Journal of Display Technology,2013,9(6):433-440. [83] HUANG H T,TSAI C C,HUANG Y P. Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs[J]. Optics Express,2010,18(S2):201-206. [84] 雷翔. 基于先进封装材料的高性能LED封装技术研究[D]. 武汉:华中科技大学,2017. LEI Xiang. Research on high performance packaging technology of light-emitting diodes based on advanced packaging materials[D]. Wuhan:Huazhong University of Science and Technology,2017. [85] KIM J K,LUO H,SCHUBERT E F,et al. Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup[J]. Japanese Journal of Applied Physics Part Letters,2005,44(21):649-651. [86] YU Xingjian,XIE Bin,CHEN Qi,et al. Thermal remote phosphor coating for phosphor-converted white-light-emitting diodes[J]. IEEE Transactions on Components Packaging Manufacturing Technology,2017,5(9):1253-1257. [87] SOMMER C,REIL F,KRENN JR,et al. The impact of inhomogeneities in the phosphor distribution on the device performance of phosphor-converted high-power white LED light sources[J]. Journal of Lightwave Technology,2010,28(22):3226-3232. [88] HU Run,LUO Xiaobing,FENG Han,et al. Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode[J]. Journal of Luminescence,2012,132(5):1252-1256. [89] LEE K C,KIM D G,KIM S M,et al. The influence of phosphor sedimentation on the white LEDs with different structure chip[C/CD]//Proceedings of the Asia Communications & Photonics Conference & Exhibition,2011. [90] HU Run,WANG Yiman,ZOU Yong,et al. Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory[J]. Journal of Applied Physics,2013,113(6):063108-1-063108-6. [91] 王依蔓. 大功率LED用荧光粉胶中颗粒沉淀现象理论和实验研究[D]. 武汉:华中科技大学,2014. WANG Yiman. Experimental and numerical study on phosphor sedimentation phenomenon of high-power LED packaging[D]. Wuhan:Huazhong University of Science and Technology,2014. [92] 赵寅生,向卫东,钟家松,等. 纳米量子点材料在LED中的研究进展[J]. 材料导报,2011,25(5):32-35. ZHAO Yinsheng,XIANG Weidong,ZHONG Jiasong, et al. Progress in study on quantum dot light emitting diode[J]. Materials Reports,2011,25(5):32-35. [93] 刘鹏,蒋玉蓉,杨盛谊. 基于量子点的白光二极管的研究进展[J]. 半导体光电,2013,34(2):163-170. LIU Peng,JIANG Yurong,YANG Shengyi. Research progresses of quantum dots-based white light-emitting diodes[J]. Semiconductor Optoelectronics,2013,34(2):163-170. [94] KIM K,JU Y W,JEONG S,et al. Photoenhancement of a quantum dot nanocomposite via UV annealing and its application to white LEDs[J]. Advanced Materials,2011,23(7):911-914. [95] SUPRAN G J,SHIRASAKI Y,SONG K W,et al. QLEDs for displays and solid-state lighting[J]. MRS Bulletin,2013,38(9):703-711. [96] CHEN K J,LIN C C,HAN H V,et al. Wide-range correlated color temperature light generation from resonant cavity hybrid quantum dot light-emitting diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics,2015,21(4):23-29. [97] NANN T,SKINNER W M. Quantum dots for electro-optic devices[J]. Acs Nano,2011,5(7):5291-5295. [98] KIM J H,YANG H. White lighting device from composite films embedded with hydrophilic Cu(In,Ga) S2/ZnS and hydrophobic InP/ZnS quantum dots[J]. Nanotechnology,2014,25(22):225601. [99] ANTAD V,SIMONOT L,BABONNEAU D. Tuning the surface plasmon resonance of silver nanoclusters by oxygen exposure and low-energy plasma annealing[J]. Nanotechnology,2013,24(4):045606. [100] ABOULAICH A,MICHALSKA M,SCHNEIDER R,et al. Ce-Doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index[J]. Acs Applied Materials Interfaces,2014,6(1):252-258. [101] KIM J H,SONG W S,YANG H. Color-converting bilayered composite plate of quantum-dot-polymer for high-color rendering white light-emitting diode[J]. Optics Letters,2013,38(15):2885-2888. [102] LEE S H,LEE K H,JO J H,et al. Remote-type,high-color gamut white light-emitting diode based on InP quantum dot color converters[J]. Optical Materials Express,2014,4(7):1297. [103] SONG WS,YANG H. Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots[J]. Chemistry of Materials A Publication of the American Chemistry Society,2012,24(10):1961-1967. [104] LEE Y J,LEE C J,CHENG C M. Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode[J]. Optics Express,2010,18(Suppl):554. [105] NARENDRAN N,GU Y,FREYSSINIER JP,et al. Solid-state lighting:Failure analysis of white LEDs[J]. Journal of Crystal Growth,2004,268(3-4):449-456. [106] BAHADUR M,NORRIS A W,ZARISFI A,et al. Silicone materials for LED packaging[C/CD]//Proceedings of the International Conference on Solid State Lighting,2006. [107] 赵苗. LED封装用有机硅材料的制备与性能研究[D]. 天津:天津大学,2014. ZHAO Miao. Preparation and performance of organic silicone materials for LED encapsulation[D]. Tianjin:Tianjin University,2014. [108] MORITA Y,KATO T,TOGASHI A,et al. Curable organopolysiloxane composition and a semiconductor device made with the use of this composition:JP,10/530693[P]. 2007-10-16. [109] YANG S C,KWAK S Y,JIN J H,et al. Thermally resistant UV-curable epoxy-siloxane hybrid materials for light emitting diode (LED) encapsulation[J]. Journal of Materials Chemistry,2012,22(18):8874. [110] 刘煜,王浩江,汤胜山,等. 功率型LED有机硅封装材料的耐老化性能研究[J]. 合成材料老化与应用,2012,41(1):1-3. LIU Yu,WANG Haojiang,TANG Shengshan,et al. Research on aging resistance of power LED silicone encapsulation materials[J]. Synthetic Materials Aging and Application,2012,41(1):1-3. [111] MONT F W,KIM J K,SCHUBERT M F,et al. High refractive index nanoparticle-loaded encapsulants for light-emitting diodes[J]. Journal of Applied Physics,2008,103(8):083120-1-083120-6. [112] 李金玉,谢冰,章少华. TiO2含量对倒装LED白光封装的发光性能的影响[J]. 南昌大学学报,2015,39(1):56-59. LI Jinyu,XIE Bin,ZHANG Shaohua. Effects of TiO2 concentrations on the luminous properties of flip-chip white LED package[J]. Journal of Nanchang University,2015,39(1):56-59. [113] 王雅芳. LED封装用透明环氧的抗紫外老化性能研究[J]. 北京电子科技学院学报,2010,18(4):38-45. WANG Yafang. Research on uvioresistance aging properties of LED discoloration of transparent epoxy resins as encapsulating materials[J]. Journal of Beijing Electronic Science and Technology Institute,2010,18(4):38-45. [114] WANG Pinchao,LIN Chunliang,SU Y K. Enhancement of light extraction efficiency in GaN-based blue light-emitting diodes by doping TiO2 nanoparticles in specific region of encapsulation silicone[J]. Japanese Journal of Applied Physics,2013,52(8):279-287. [115] HSU C N,CHANG Y H,LIU C Y,et al. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode[J]. Thermal Science,2013,17(5):1277-1283. [116] LI Xin,CHEN Xu,LU Guoquan. Reliability of high-power light emitting diode attached with different thermal interface materials[J]. Journal of Electronic Packaging,2010,132(3):031011. [117] MANIKAM V R,CHEONG K Y. Die attach materials for high temperature applications:A review[J]. IEEE Transactions on Components Packaging Manufacturing Technology,2011,1(4):457-478. [118] YIN Luqiao,ZHANG Jinlong,SONG Peng,et al. The effects of void ratio in die attach layer on optical and thermal performances of high power light emitting diode[J]. Journal of Nanoelectronics Optoelectronics,2014,9(1):1-6. [119] WANG C P,CHEN T T,FU HK,et al. Transient analysis of partial thermal characteristics of multistructure power LEDs[J]. IEEE Transactions on Electron Devices,2013,60(5):1668-1672. [120] YAN B,YOU J P,TRAN N T,et al. Influence of die attach layer on thermal performance of high power light emitting diodes[J]. IEEE Transactions on Components Packaging Technologies,2010,33(4):722-727. [121] ZHANG Guangchen,FENG Shiwei,ZHU Hui,et al. Determination of thermal fatigue delamination of die attach materials for high-brightness LEDs[J]. IEEE Photonics Technology Letters,2012,24(5):398-400. [122] ZHANG Guangchen,FENG Shiwei,ZHOU Zhou,et al. Thermal fatigue characteristics of die attach materials for packaged high-brightness LEDs[J]. IEEE Transactions on Components Packaging Manufacturing Technology,2012,2(8):1346-1350. [123] 吴海彬,王昌铃. 不同固晶材料对超高亮度LED性能的影响[J]. 照明工程学报,2007,18(4):6-9. WU Haibin,WANG Changling. Effect of different die attach materials on performance of super ligh emitting diodes[J]. China Illuminating Engineering Journal,2007,18(4):6-9. [124] 麦家儿,吴廷,丁鑫锐. 不同固晶胶量对LED器件性能的影响[J]. 电子制作,2013(13):23-25. MAI Jiaer,WU Ting,DING Xinrui. Effect of die attachment adhesive amount on performance of LED[J]. Electronic Manufacturing,2013(13):23-25. [125] 刘洪涛,钱可元,罗毅. 功率型LED封装中的热阻分析[J]. 半导体光电,2009(6):39-42. LIU Hongtao,QIAN Keyuan,LUO Yi. Analysis and measurement of thermal resistance induced by LED bonding[J]. Semiconductor Optoelectronics,2009(6):39-42. [126] LIU Chenmin,LU Dong,LANG Xianxin,et al. Effects of surface treatments on the performance of high thermal conductive die attach adhesives (DAAs)[C/CD]//Proceedings of the International Conference on Electronic Materials & Packaging,2012. [127] WANG T,LEI G,CHEN X,et al. Improved thermal performance of high-power LED by using low-temperature sintered chip attachment[C/CD]//Proceedings of the International Conference on Electronic Packaging Technology & High Density Packaging,2009. [128] HORNG R H,HONG J S,TSAI Y L,et al. Optimized thermal management from a chip to a heat sink for high-power GaN-based light-emitting diodes[J]. IEEE Transactions on Electron Devices,2010,57(9):2203-2207. [129] CHEN C J,CHEN C M,HORNG R H,et al. Thermal management and interfacial properties in high-power GaN-based light-emitting diodes employing diamond-added Sn-3 wt.%Ag-0.5 wt.%Cu solder as a die-attach material[J]. Journal of Electronic Materials,2010,39(12):2618-2626. [130] LIOU B H,CHEN C M,HORNG R H,et al. Improvement of thermal management of high-power GaN-based light-emitting diodes[J]. Microelectronics Reliability,2012,52(5):861-865. [131] KURAMOTO M,OGAWA S,NIWA M,et al. Die bonding for a nitride light-emitting diode by low-temperature sintering of micrometer size silver particles[J]. IEEE Transactions on Components Packaging Technologies,2010,33(4):801-808. [132] KURAMOTO M,OGAWA S,NIWA M,et al. New silver paste for die-attaching ceramic light-emitting diode packages[J]. IEEE Transactions on Components Packaging Manufacturing Technology,2011,1(5):653-659. [133] CHEN Mingxiang,XU Tianming,SHENG Liu,et al. Study on thermal conductive adhesives for high-power LEDs packaging[C/CD]//Proceedings of the International Symposium on Advanced Packaging Materials,2011. [134] ARIK M,BECKER C A,WEAVER S E,et al. Thermal management of LEDs:Package to system[C/CD]//Proceedings of Spie the International Society for Optical Engineering,2004. [135] 方亮,钟前刚,何建,等. 大功率LED封装用散热铝基板的制备与性能研究[J]. 材料导报,2011(2):130-134. FANG Liang,ZHONG Qiangang,HE Jian,et al. Study on the fabrication and performance of aluminum substrate for heat dissipation of high power LED[J]. Materials Reports,2011,25(2):130-134. [136] DEMILO C,BERGAD C,FORNI R,et al. Thermally induced stresses resulting from coefficient of thermal expansion differentials between an LED sub-mount material and various mounting substrates[C/CD]//Proceedings of the Light-emitting Diodes:Research,Manufacturing,& Applications XI,2007. [137] 陈明祥. 大功率LED低热阻封装技术进展[J]. 半导体光电,2011,32(5):599-605. CHEN Mingxiang. Advances in low thermal resistance packaging for high-power LEDs[J]. Semiconductor Optoelectronics,2011,32(5):599-605. [138] CHO H M,KIM H J. Metal-core printed circuit board with alumina layer by aerosol deposition process[J]. IEEE Electron Device Letters,2008,29(9):991-993. [139] SHIN M W. Thermal design of high-power LED package and system[J]. Journal of Proceeding of SPIE,2006,6355:635509. [140] 胡东飞. 功率型LED封装技术及热设计[D]. 杭州:杭州电子科技大学. HU Dongfei. The power LED packaging technique and thermal design[D]. Hangzhou:Hangzhou Dianzi University,2011. [141] 郭威. 大功率LED的热管理[D]. 武汉:华中科技大学,2013. GUO Wei. Thermal management of high power LED[D]. Hangzhou:Huazhong University of Technology,2013. [142] YEO S K, CHUN JH,KIM K M,et al. An X-band high power amplifier module package using selectively anodized aluminum substrate[C/CD]//Proceedings of the European Microwave Conference,2007. [143] RAO BS,HEMAMBAR C,PATHAK AV,et al. Al/SiC carriers for microwave integrated circuits by a new technique of pressureless infiltration[J]. IEEE Transactions on Electronics Packaging Manufacturing,2006,29(1):58-63. [144] LIN V. DPC on silicon for next generation high power packaging applications[C/CD]//Proceedings of the Microsystems Packaging Assembly & Circuits Technology Conference,2011. [145] ZHANG Rong,LEE S W R,XIAO D G,et al. LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D interconnection[C/CD]//Proceedings of the Electronic Components & Technology Conference,2011. [146] WU Wuchen,HELD M,JACOB P,et al. Investigation on the long term reliability of power IGBT modules[C/CD]//Proceedings of the Power Semiconductor Devices and ICs,1995 ISPSD'95 Proceedings of the 7th International Symposium on,1995. [147] HELD M,JACOB P,NICOLETTI G,et al. Fast power cycling test for insulated gate bipolar transistor modules in traction application[J]. International Journal of Electronics,1999,86(10):1193-1204. [148] YANG Shaoyong,XIANG Dawei,BRYANT A,et al. Condition monitoring for device reliability in power electronic converters:A review[J]. IEEE Transactions on Power Electronics,2011,25(11):2734-2752. [149] ABU H,YU Yuechuan,DOUGLAS D,et al. A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices[J]. IEEE Transactions on Power Electronics,2018,34(5):4729-4746. [150] ZHANG Yi,WANG Huai,WANG Zhongxu,et al. The impact of mission profile models on the predicted lifetime of IGBT modules in the modular multilevel converter[C/CD]//Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society,2017. [151] SALMELA O. Acceleration factors for lead-free solder materials[J]. IEEE Transactions on Components & Packaging Technologies,2007,30(4):700-707. [152] SALMELA O,PUTAALA J,NOUSIAINEN O,et al. Multipurpose lead-free reliability prediction model[C/CD]//Proceedings of the Pan Pacific Microelectronics Symposium,2016. [153] DARVEAUX R,BANERJI K. Fatigue analysis of flip chip assemblies using thermal stress simulations and a Coffin-Manson relation[C/CD]//Proceedings of the Electronic Components & Technology Conference,1991. [154] CAVALLARO D,GRECO R,BAZZANO G. Effect of solder material thickness on power MOSFET reliability by electro-thermo-mechanical simulations[J]. Microelectronics Reliability,2018,88-90:1168-1171. [155] SCHUBERT A,DUDEK R,AUERSWALD E,et al. Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation[C/CD]//Proceedings of the Electronic Components & Technology Conference,2003. [156] SHIRO K,TATEKI Y,MASATOSHI N,et al. Investigation on path-integral expression of the J-integral range using numerical simulations of fatigue crack growth[J]. JSME International Journal,1989,32(2):237-244. [157] SHIODA R,KARIYA Y,MIZUMURA N,et al. Low-cycle fatigue life and fatigue propagation of sintered Ag nanoparticles[J]. Electronic Materials Letters,2017,46:1155-1162. [158] LIU Sheng,MEI Yuhai. Behaviors of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption and wave soldering[J]. IEEE Transactions on Components,Packaging,and Manufacturing Technology,1995,18(3):634-645. [159] GAO Xiang. Research on reliability for flip-chip packageand through silicon via (TSV) in 3D package[D]. Wuhan:Huazhong University of Science and Technology,2014. [160] DAVIS E M,HARDING W E,SCHWARTZ R S,et al. Solid logic technology:Versatile,high-performance microelectronics[J]. IBM Journal of Research and Development,2000,44(1-2):56-68. [161] NAKANO F,SOGA T,AMAGI S. Resin insertion effect on thermal cycle resistivity of flip chip mounted LSI devices[C/CD]//Proceedings of the International Society of Hybrid Microelectronics Conference,1987. [162] TSUKADA Yutaka, Flip Chip Bonding on Epoxy Base Printed Circuit Board[J]. Journal of Japan Institute of Electronics Packaging, 1997, 13(1):12-18. [163] LIU Sheng, MEI Yuhai, WU T.Y., Bimaterial interfacial crack growth as a function of mode-mixity[J]. IEEE Transactions on Components,Packaging,and Manufacturing Technology, 1995, 18(3):618-626 [164] WANG Jiajun,LU Minfu,ZOU Daqing,et al. Investigation of interfacial fracture behavior of a flip-chip package under a constant concentrated load[J]. IEEE Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging,1998,21(1):79-86. [165] WANG Jiajun,ZOU Daqing,LU Minfu,et al. Evaluation of interfacial fracture toughness of a flip-chip package and a bimaterial system by a combined experimental and numerical method[J]. Engineering Fracture Mechanics,1999,64(6):781-797. [166] LiuSHENG,ZhuJIANSEN,ZouDAQING,et al. Study of delaminated plastic packages by high temperature Moire and finite element method[J]. IEEE Transactions on Components Packaging and Manufacturing Technology,1997,20(4):505-512. [167] LAU J,CHANG C,LEE SW. Failure analysis of solder bumped flip chip on low-cost substrates[J]. IEEE Transactions on Electronics Packaging Manufacturing,2000,23:19-27. [168] KNECHT S,FOX L R. Constitutive relation and creep-fatigue life model for eutectic tin-lead solder[J]. IEEE Transactions on Components Hybrids and Manufacturing Technology,1990,13(2):424-433. [169] WANG Jiajun,REN Wei,ZOU Daqing,et al. Effect of cleaning and non-cleaning situations on the reliability of flip-chip packages[J]. IEEE Transactions on Components and Packaging Technologies,1999,22(2):221-228. [170] 陈照辉. 大功率LED封装和硅通孔三维封装工艺及可靠性数值仿真与试验研究[D]. 上海:上海交通大学,2012. CHEN Zhaohui. Study on process and reliability of high power LED packaging and through silicon via 3D packaging by simulation and experiment[D]. Shanghai:Shanghai Jiao Tong University,2012. [171] 周颖. 基于硅通孔的三维电子封装热机械可靠性研究[D]. 武汉:华中科技大学,2016. ZHOU Ying. Research on reliability of through silicon via (TSV) in 3D integration[D]. Wuhan:Huazhong University of Science and Technology,2016. [172] CHEN Zhaohui,LIU Sheng. Simulation of copper electroplating fill process of through silicon via[C/CD]//Proceedings of the 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging,16-19 Aug. 2010,2010. [173] KARNEZOS M. 3D packaging:Where all technologies come together[C/CD]//Proceedings of the IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium,14-16 July 2004,2004. [174] ROWBOTHAM T,PATEL J,LAM T,et al. Back side exposure of variable size through silicon vias[J]. Journal of Vacuum Science & Technology B,2006,24(5):2460-2466. [175] THOMPSON S E,SUN G Y,CHOI Y S,et al. Uniaxial-process-induced strained-Si:Extending the CMOS roadmap[J]. IEEE Transactions on Electron Devices,2006,53(5):1010-1020. [176] LIU Xi,CHEN Qiao,DIXIT P,et al. Failure mechanisms and optimum design for electroplated copper through-silicon vias (TSV)[C/CD]//2009 59th Electronic Components and Technology Conference,26-29,May,2009,San Diego,CA,USA,2009. [177] ZHONG Shunan,WANG Shiwei,CHEN Qianwen,et al. Thermal reliability analysis and optimization of polymer insulating through-silicon-vias (TSVs) for 3D integration[J]. Science China-Technological Sciences,2014,57(1):128-135. [178] TU K N,LI J C M. Spontaneous whisker growth on lead-free solder finishes[J]. Materials Science and Engineering:A,2005,409(1-2):131-139. |
[1] | 俞水, 吴晓, 郭鹏, 王志华. 基于首次穿越PDF自适应估计的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(5): 264-275. |
[2] | 李莹, 张嘉方, 张钊墉, 王鑫丞, 张晋, 孔祥东. 斜盘式轴向柱塞泵柱塞颈部最小直径设计[J]. 机械工程学报, 2024, 60(4): 430-437. |
[3] | 钱萍, 刘鑫雨, 陈文华, 王哲, 郭明达. 电连接器用聚氨酯胶密封件贮存可靠性建模[J]. 机械工程学报, 2024, 60(20): 361-371. |
[4] | 韦新鹏, 姚中洋, 宝文礼, 张哲, 姜潮. 一种基于主动学习克里金模型的证据理论可靠性分析方法[J]. 机械工程学报, 2024, 60(2): 356-368. |
[5] | 王文林, 张子波, 李英子, 吴永明, 王起新, 梁若霜. 液压缸可靠性试验与数据分析研究平台[J]. 机械工程学报, 2024, 60(18): 385-393. |
[6] | 胡俊宇, 韩旭, 陶友瑞, 李珊瑚, 张建宁. 一种考虑跟随误差的S形轨迹残余振动抑制可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 390-399. |
[7] | 杨旭锋, 程鑫, 刘泽清. 一种融合交叉熵自适应抽样与ALK模型的可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 73-82. |
[8] | 胡伟飞, 廖家乐, 郭云飞, 鄢继铨, 李光, 岳海峰, 谭建荣. 基于物理信息神经网络的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(13): 141-153. |
[9] | 张显程, 谷行行, 刘宇, 王润梓, 宋鲁凯, 谢里阳, 赵丙峰, 夏侯唐凡, 李勇, 孙莉, 温建锋, 涂善东. 基于工程损伤理论的高温装备可靠性评估与运维管理[J]. 机械工程学报, 2024, 60(13): 154-172. |
[10] | 刘强, 高晴利, 王伟, 韩邦成, 牛萍娟, 王子羲. 激光巨量转移复合型运动平台用洛伦兹磁轴承[J]. 机械工程学报, 2024, 60(1): 198-209. |
[11] | 常琦, 周长聪, 刘付超, 张浩, 岳珠峰. 考虑铰接间隙区间不确定性的飞机舱门锁机构可靠性分析[J]. 机械工程学报, 2023, 59(8): 264-272. |
[12] | 范小宁, 王凯, 余畅. 基于约束边界抽样的起重机金属结构可靠性优化[J]. 机械工程学报, 2023, 59(8): 288-298. |
[13] | 宋守许, 庞少聪, 周丹, 田永廷. 考虑可靠性与回收再利用性的直流充电桩设计过程关键部件识别方法[J]. 机械工程学报, 2023, 59(7): 18-28. |
[14] | 杨强, 孙本奇, 李树军, 戴建生. 面向构态切换稳定性的约束变胞机构可靠性优化设计方法[J]. 机械工程学报, 2023, 59(3): 22-37. |
[15] | 葛雪峰, 姜佳宝, 赵耀. 金属化膜电容器电热仿真分析*[J]. 电气工程学报, 2023, 18(3): 224-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||