[1] PUTATUNDA S K, GADICHERLA P K. Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure[J]. Materials Science and Engineering:A, 1999, 268:15-31. [2] 崔君军,陈礼清,李海智,等. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能[J]. 金属学报, 2016(7):778-786. CUI Junjun, CHEN Liqing, LI Haizhi, et al. Tempered microstructure and mechanical properties of austempered low alloyed bainitic ductile iron[J]. Acta Metallurgica Sinica, 2016(7):778-786. [3] WANG B, HE M, BARBER G, et al. Rolling contact fatigue resistance of austempered ductile iron processed at various austempering holding times[J]. Wear, 2018, 398:41-46. [4] LAINO S, SIKORA J, DOMMARCO R. Development of wear resistant carbidic austempered ductile iron(CADI)[J]. Wear, 2008, 265:1-7. [5] KRANC M, PIROWSKI Z, BITKA A. CADI-Carbidic austempered ductile iron. Control structure in order to improve the tribological properties[C]//Proceedings of 71st World Foundry Congress (WFC 2014), 2014, 1:1398-1402. [6] PENG Y, JIN H, LIU J, et al. Influence of cooling rate on the microstructure and properties of a new wear resistant carbidic austempered ductile iron[J]. Materials Characterization, 2012, 72:53-58. [7] REFAEY A, FATAHALLA N. Effect of microstructure on properties of ADI and low alloyed ductile iron[J]. Journal of Materials Science, 2003, 38:351-362. [8] YANG P, FU H, LIN J, et al. Experimental and ab initio study of the influence of a compound modifier on carbidic ductile iron[J]. Metallurgical Research Technology, 2019, 116:306. [9] YANG P, FU H, NAN R, et al. Effect of Ti modification on microstructures and properties of carbidic austempered ductile iron[J]. Journal of Materials Engineering and Performance, 2019, 28:2335-2347. [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 17445-2009铸造磨球[S]. 北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 17445-2009 Cast grinding balls[S]. Beijing:Standards Press of China, 2009. [11] 李静. 钼对含碳化物等温淬火球墨铸铁(CADI)组织和性能的影响[D]. 郑州:郑州大学, 2014. LI Jing. Effect of molybdenum on microstructure and properties of carbidic austempered ductile iron[D]. Zhenzhou:Zhenzhou University, 2014. [12] 李路. 锰对含碳化物等温淬火球墨铸铁组织和性能的影响[D]. 郑州:郑州大学, 2013. LI Lu. Effect of manganese on microstructure and properties of carbidic austempered ductile Iron[D]. Zhengzhou:Zhengzhou University, 2013. [13] 马永华. 钒对含碳化物等温淬火球墨铸铁组织和性能的影响[D]. 郑州:郑州大学, 2011. MA Yonghua. Effect of vanadium on microstructure and properties of carbidic austempered ductile Iron[D]. Zhengzhou:Zhengzhou University, 2011. [14] 张婷. 铬对CADI组织和性能的影响[D]. 郑州:郑州大学, 2009. ZHANG Ting. Effect of vanadium on microstructure and properties of CADI[D]. Zhengzhou:Zhengzhou University, 2009. [15] 董天顺,李国禄,刘金海,等. 含碳化物等温淬火球墨铸铁的料浆冲蚀磨损特性[J]. 材料热处理学报, 2014, 35(增刊Ⅱ):153-157. DONG Tianshun, LI Guolu, LIU Jinhai, et al. Erosive wear behaviors of carbidic austempered ductile iron in slurry[J]. Transactions of Materials and Heat Treatment, 2014, 35(Suppl.Ⅱ):153-157. [16] 李国禄,董天顺,刘金海,等. 淬火温度对含碳化物等温淬火球墨铸铁耐腐蚀磨损性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19:972-977. LI Guolu, DONG Tianshun, LIU Jinhai, et al. Effects of austempered temperature on corrosive wear behavior of carbidic austempered ductile iron[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19:972-977. [17] 吕宇鹏,李士同,陈方生,等. 变质超高锰钢的冲击磨料磨损行为研究[J]. 金属学报, 1999(6):581-584. LÜ Yupeng, LI Shitong, CHEN Fangsheng, et al. On the impact abrasive wear of super-high manganese steel[J] Acta Metallurgica Sinica, 1999(6):581-584. [18] YANG P, FU H, ZHAO X, et al. Wear behavior of CADI obtained at different austenitizing temperatures[J]. Tribology International, 2019, 140:105876. [19] YANG P, FU H, ABSI R, et al. Microstructure evolution of carbidic austempered ductile iron at different austempering temperatures[J]. Journal of Materials Science, 2021, 56:4843-4857. [20] YANG P, FU H, LI G, et al. Microstructures and properties of carbidic austempered ductile iron containing Fe3C particles and superfine ausferrite[J]. Materials Design, 2020, 186:108363. [21] 许根华. 磨球破损机理与落球冲击下的马氏体相变[D]. 北京:清华大学, 1995. XU Genhua. Breakage mechanism of grinding ball and martensite transformation under impact of falling ball[D]. Beijing:Tsinghua University, 1995. |