机械工程学报 ›› 2024, Vol. 60 ›› Issue (16): 412-428.doi: 10.3901/JME.2024.16.412
郭飞燕1, 肖世宏2, 肖庆东2, 王仲奇3
收稿日期:
2023-10-25
修回日期:
2024-03-10
出版日期:
2024-08-20
发布日期:
2024-10-21
作者简介:
郭飞燕(通信作者),男,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为航空航天先进装配及连接技术。E-mail:2009200890@mail.nwpu.edu.cn基金资助:
GUO Feiyan1, XIAO Shihong2, XIAO Qingdong2, WANG Zhongqi3
Received:
2023-10-25
Revised:
2024-03-10
Online:
2024-08-20
Published:
2024-10-21
摘要: 装配是飞机研发中的关键环节之一,直接影响产品最终性能、质量及可靠性。随着数字化技术、高端制造装备的发展,零部件设计水平与加工一致性得到显著提高,飞机研制质量和整机装配性能的保障正在由最初的设计加工环节逐渐向装配环节转移,相关技术受到广泛关注。首先,根据飞机结构装配的技术内涵与外延,结合新一代飞机在结构、寿命、性能、材料方面在结构装配质量控制中带来的新难点,从装配精度传递与质量控制基础方法、复合材料装配等方面分析装配技术状态;其次,结合实际装配生产中的装配工艺及质量控制环节,指出现场装配中存在的工程瓶颈难题,并结合技术发展现状总结分析国内的技术差距,以此解析高性能装配的技术内涵且建立面向装配性能保障的“几何-力学-数据-质量”四维模型;最后,从几何-力学-数据三个方面出发,指出新一代飞机结构装配在基础理论与方法层面的发展思路及方向,为实现航空产品的高性能装配与可靠服役奠定坚实技术基础。
中图分类号:
郭飞燕, 肖世宏, 肖庆东, 王仲奇. 面向性能保障的新一代飞机结构装配质量控制技术[J]. 机械工程学报, 2024, 60(16): 412-428.
GUO Feiyan, XIAO Shihong, XIAO Qingdong, WANG Zhongqi. Structure Assembly Quality Controlling Technology Oriented to Performance Assurance for New-generation Aircraft[J]. Journal of Mechanical Engineering, 2024, 60(16): 412-428.
[1] GUO F,XIAO Q,XIAO S,et al. Analysis on quantifiable and controllable assembly technology for aeronautical thin-walled structures[J]. Robotics and Computer- Integrated Manufacturing,2023,80(4):102473. [2] GUO F,HOU Y,XIAO Q,et al. Reliability improvement on assembly accuracy with maximum out-of-tolerance probability analysis and prior precise repair optimization[J]. Advanced Engineering Informatics,2023,55(1):101866. [3] GUO F,ZOU F,LIU J,et al. Working mode in aircraft manufacturing based on digital coordination model[J]. International Journal of Advanced Manufacturing Technology,2018,76(5-8):1-25. [4] GUO F,ZOU F,LIU J,et al. Comprehensive identification of aircraft coordination feature based on complete importance modeling and its engineering application[J]. Assembly Automation,2018,38(4):398-411. [5] 刘检华,孙清超,程晖,等. 产品装配技术的研究现状、技术内涵及发展趋势[J]. 机械工程学报,2018,54(11):2-28. LIU Jianhua,SUN Qingchao,CHENG Hui,et al. The state-of-the-art,connotation and developing trends of the products assembly technology[J]. Journal of Mechanical Engineering,2018,54(11):2-28. [6] 隋少春,许艾明,黎小华,等. 面向航空智能制造的DT与AI融合应用[J].航空学报,2020,41(7):7-17. SUI Shaochun,XU Aiming,LI Xiaohua,et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronauticaet Astronautica Sinica,2020,41(7):7-17. [7] MCMULLIN D L,JACOBSEN A R,CARVAN D C,et al. The Boeing 787 dreamliner-a case study in large-scale design integration[J]. Human Factors and Ergonomics Society Annual Meeting Proceedings,2008,52(20):1670-1671. [8] 王彬文,陈先民,苏运来,等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报,2021,42(5):6-44. WANG Binwen,CHEN Xianmin,SU Yunlai,et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronauticaet Astronautica Sinica,2021,42(5):6-44. [9] 武晨. 专访王向明:"航空业的0.1mm工程"[J]. 环球飞行,2013(10):66-69. WU Chen. Exclusive interview with Wang Xiangming:"The 0.1mm project of the aviation industry"[J]. Flying Around the World,2013(10):66-69. [10] 程晖,樊新田,徐冠华,等. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报,2021,42(10):57-73. CHENG Hui,FAN Xintian,XU Guanhua,et al. State of the art of precise interference-fit technology for composite structures in aircraft[J]. Acta Aeronauticaet Astronautica Sinica,2021,42(10):57-73. [11] ARUNRAJA K M,SELVAKUMAR S,PRAVEEN P. Optimisation of welding fixture layout for sheet metal components using DOE[J]. International Journal of Productivity and Quality Management,2019,28(4):522-558. [12] LIU J,ZHAO A,KE Z,et al. Influence of rivet diameter and pitch on the fatigue performance of riveted lap joints based on stress distribution analysis[J]. Materials,2020,13(16):3625. [13] GREGORIO J,LARTIGUE C,THIEBAUT F,et al. A digital twin-based approach for the management of geometrical deviations during assembly processes[J]. Journal of Manufacturing Systems,2021,58:108-117. [14] HOFMANN R,GROGER S,ANWER N. Skin model shapes for multi-stage manufacturing in single-part production[J]. Procedia CIRP,2020,92:200-205. [15] JIANG Y,HUANG X,LI S,et al. A coordination modelling approach for assembly of multi-constrained objects based on measured skin model[J]. Assembly Automation,2019,39(2):380-391. [16] KAISARLIS G,MAVRIDIS A,VAKOUFTSIS C,et al. Computational implementation of part stiffness on tolerance specification based on the functional performance of assemblies[J]. International Journal of Advanced Manufacturing Technology,2020,111(10):397-410. [17] YOSHIZATO A. Prediction and minimization of excessive distortions and residual stresses in compliant assembled structures[D]. Victoria:University of Victoria,2020. [18] KANG H,LI Z. Assembly research of aero-engine casing involving bolted connection based on rigid-compliant coupling assembly deviation modeling[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2020,234(14):2803-2820. [19] 易扬,冯锦丹,刘金山,等. 复杂产品数字孪生装配模型表达与精度预测[J]. 计算机集成制造系统,2021,27(2):617-630. YI Yang,FENG Jindan,LIU Jinshan,et al. Model expression and accuracy prediction method of digital twin-based assembly for complex products[J]. Computer Integrated Manufacturing Systems,2021,27(2):617-630. [20] IACCARINO P,INSERRA S,CERRETA P,et al. Determinant assembly approach for flat-shaped airframe components[J]. International Journal of Advanced Manufacturing Technology,2020,108(6):2433-2443. [21] YACOB F,SEMERE D. A multilayer shallow learning approach to variation prediction and variation source identification in multistage machining processes[J]. Journal of Intelligent Manufacturing,2021,32(4):1173-1187. [22] JING T,TIAN X,LIU X,et al. A multiple alternative processes-based cost-tolerance optimal model for aircraft assembly[J]. The International Journal of Advanced Manufacturing Technology,2020,107(5-8):667-677. [23] 杜坤鹏,郑炜,李泷杲,等. 基于实测模型的围框式翼身对接位姿优化[J]. 航空制造技术,2022,65(12):24-33. DU Kunpeng,ZHENG Wei,LI longgao,et al. Posture optimization of framed wing-body docking based on measured model[J]. Aeronautical Manufacturing Technology,2022,65(12):24-33. [24] 孙学民,刘世民,申兴旺,等. 数字孪生驱动的高精密产品智能化装配方法[J]. 计算机集成制造系统,2022,28(6):1704-1716. SUN Xuemin,LIU Shimin,SHEN Xingwang,et al. Digital twin-driven intelligent assembly method for high precision products[J]. Computer Integrated Manufacturing Systems,2022,28(6):1704-1716. [25] 肖庆东,张学睿,郭飞燕,等. 飞机装配质量主动实时控制技术研究现状与发展趋势[J]. 航空制造技术,2021,64(20):22-35. XIAO Qingdong,ZHANG Xuerui,GUO Feiyan,et al. Research status and development trends of active real-time control of aircraft assembly quality[J]. Aeronautical Manufacturing Technology,2021,64(20):22-35. [26] MANOHAR K,HOGAN T,BUTTRICK J,et al. Predicting shim gaps in aircraft assembly with machine learning and sparse sensing[J]. Journal of Manufacturing Systems,2018,48(7):87-95. [27] LEE B,BINDER W,PAREDIS C. A systematic method for specifying effective value models[J]. Procedia Computer Science,2014,28:228-236. [28] Turnkey Factory. Automation for the future of aerospace,inc. lockheed martin f-35 JSF final assembly[EB/OL]. (2003-08-24)[2023-4-25]http://www.aint.com/projects/assembly_alignment_projects/lockheed_martin_f35_jsf_final_assembly. [29] Lockheed Matin,Inc. How to build aircraft articles in half the time[EB/OL]. (2021-05-11)[2023-4-25]. https://www.lockheedmartin.com/en-us/news/features/2021/How-to-Build-Aircraft-Articles-in-Half-the-Time.html. [30] RAMIREZ J,WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology,2014,15(12):447-455. [31] JEFFERSON T,BENARDOS P,RATCHEV S. Reconfigurable assembly system design methodology:A wing assembly case study[J]. SAE International Journal of Materials and Manufacturing,2015,9(1):31-48. [32] ARISTA R,FALGARONE H. Flexible best fit assembly of large aircraft components. Airbus A350 XWB Case Study[C]//14th IFIP International Conference on Product Lifecycle Management,July 2017,Seville,Spain:152-161. [33] WHITEHOUSE J,WASH G. Positioning system for supporting structural components during assembly[P]. US5659939,1997. [34] FRANCIOSA P,GERBINO S,LANZOTTI A,et al. Automatic evaluation of variational parameters for tolerance analysis of rigid parts based on graphs[J]. International Journal on Interactive Design & Manufacturing,2013,7(4):239-248. [35] WANDIN W I,ROBINSON T,ARMSTRONG C G,et al. Using CAD parameter sensitivities for stack-up tolerance allocation[J]. International Journal on Interactive Design & Manufacturing,2016,10(2):139-151. [36] BERUVIDES G,VILLALONGA A,FRANCIOSA P,et al. Fault pattern identification in multi-stage assembly processes with non-ideal sheet-metal parts based on reinforcement learning architecture[J]. Procedia Cirp,2018,67(3):601-606. [37] 石章虎,邓珍波,罗勇,等. 飞机零部件自适应装配系统研究[J]. 中国机械工程,2020,31(12):1499-1503. SHI Zhanghu,DENG Zhenbo,LUO Yong,et al. Research on adaptive assembly systems for aircraft parts[J]. China Mechanical Engineering,2020,31(12):1499-1503. [38] 姜珊,王仲奇,夏松,等. 飞机柔性工装数字孪生几何模型构建方法[J]. 航空制造技术,2022,65(12):86-91. JIANG Shan,WANG Zhongqi,XIA Song,et al. Construction method of digital twin geometry model for aircraft flexible tooling[J]. Aeronautical Manufacturing Technology,2022,65(12):86-91. [39] WEN Y,YUE X,HUNT J,et al. Virtual assembly and residual stress analysis for the composite fuselage assembly process[J]. Journal of Manufacturing Systems,2019,52(7):55-62. [40] JAMSHIDI J,KAYANI A,IRAVANI P,et al. Manufacturing and assembly automation by integrated metrology systems for aircraft wing fabrication[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2010,224(1):25-36. [41] GLAZEBROOK C. Assembly of aircraft components[P]. US8479394,2013. [42] MAROPOULOS P,MUELANER J,SUMMERS M,et al. A new paradigm in large-scale assembly-research priorities in measurement assisted assembly[J]. The International Journal of Advanced Manufacturing Technology,2014,70(1-4):621-633. [43] SMITH J. Concept development of an automated shim cell for F-35 forward fuselage outer mold line control[D]. Menomonie:University of Wisconsin-Stout,2011. [44] WAAS V,HIDAYAT M,NOEROCHIM L. Finite element simulation of delamination in carbon fiber/epoxy laminate using cohesive zone model:Effect of meshing variation[J]. Materials Science Forum,2019,964(7):257-262. [45] GOERING J,BOHLMANN R,WANTHAL S,et al. Assembly induced delaminations in composite structures[C]//Proceedings of Ninth DoD(NASA)FAA Conference on Fibrous Composites in Structural Design,September 1,1992,Lake Tahoe,USA,1992:1353-1379. [46] 宋丹龙. CFRP结构干涉连接区域损伤萌生机理与控制方法研究[D]. 西安:西北工业大学,2016. SONG Danlong. Damage initiation mechanism and optimization method around interference-fit joint of CFRP structures[D]. Xi'an:Northwestern Polytechnical University,2016. [47] 李健. 单向载荷下CFRP/Ti合金干涉连接界面微动行为及损伤机理[D]. 西安:西北工业大学,2016. LI Jian. The fretting behavior and surface damage mechanism of CFRP/Titanium alloy interference-fit composite structure under unidirectional load[D]. Xi'an:Northwestern Polytechnical University,2016. [48] 武涛. 复合材料多钉干涉连接应力分布及损伤萌生研究[D]. 西安:西北工业大学,2017. WU Tao. Stress distribution and damage initiation analysis of composite multi-pin joints with interference fit[D]. Xi'an:Northwestern Polytechnical University,2017. [49] 邹鹏. 复合材料干涉螺接结构损伤萌生与扩展机理研究[D]. 西安:西北工业大学,2017. ZOU Peng. Research on the damage initiation and evolution mechanism of composite interference-fit bolted structures[D]. Xi'an:Northwestern Polytechnical University,2017. [50] 程晖,樊新田,徐冠华,等. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报,2021,42(10):524876. CHENG Hui,FAN Xintian,XU Guanhua,et al. State of the art of precise interference-fit technology for composite structures in aircraft[J]. Acta Aeronauticaet Astronautica Sinica,2021,42(10):524876. [51] ZHAI Y,LI X,LIANG W,et al. Three-dimensional layer-by-layer stress analysis of single-lap,countersunk composite joints with varying joining interface conditions[J]. Composite Structures,2018,202(10):1021-1031. [52] 黎雪婷,安鲁陵,岳烜德,等. 飞机复合材料壁板装配中临时紧固件数量与布局优化方法[J]. 复合材料学报,2022,39(8):4102-4116. LI Xueting,AN Luling,YUE Xuande,er al. Optimization method of the number and layout of temporary fasteners in composite panel assembly of aircraft[J]. Acta Materiae Compositae Sinica,2022,39(8):4102-4116. [53] ZHANG W,AN L,CHEN Y,et al. Optimisation for clamping force of aircraft composite structure assembly considering form defects and part deformations[J]. Advances in Mechanical Engineering,2021,13(4):168781402199570. [54] 张岐良,曹增强,李红梅,等. 干涉配合弹性强化机理分析[J]. 航空学报,2018,39(4):421687. ZHANG Qiliang,CAO Zengqiang,LI Hongmei,et al. Elastic fatigue enhancement mechanism of interference fit[J]. Acta Aeronauticaet Astronautica Sinica,2018,39(4):421687. [55] 曹跃杰,魏凌峰,张铭豪,等. 薄层复合材料螺栓连接结构渐进失效机制试验研究[J]. 航空学报,2021,42(12):424667. CAO Yuejie,WEI Lingfeng,ZHANG Minghao,et al. Experimental study on progressive failure mechanism of thin-laminate bolted joints[J]. Acta Aeronauticaet Astronautica Sinica,2021,42(12):424667. [56] 赵丽滨,龚愉,张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报,2019,40(1):522509. ZHAO Libin,GONG Yu,ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronauticaet Astronautica Sinica,2019,40(1):522509. [57] 赵丽滨,山美娟,彭雷,等. 制造公差对复合材料螺栓连接结构强度分散性的影响[J]. 复合材料学报,2015,32(4):1092-1098. ZHAO Libin,SHAN Meijuan,PENG Lei,et al. Effect of manufacturing tolerance on strength scatter of composite bolted joint structure[J]. Acta Materiae Compositae Sinica,2015,32(4):1092-1098. [58] 蔡启阳,赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报,2021,38(12):4260-4270. CAI Qiyang,ZHAO Qi. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica,2021,38(12):4260-4270. [59] 曾超. 飞机结构干涉铆接应力特征及其疲劳特性[D]. 南京:南京航空航天大学,2017. ZENG Chao. Interference riveting induced residual stress in aircraft lap joints and its influence on fatigue[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [60] LI M,TIAN W,HU J,et al. Study on shear behavior of riveted lap joints of aircraft fuselage with different hole diameters and squeeze forces[J]. Engineering Failure Analysis,2022,127(9):105499. [61] ZHANG H,YANG D,DING H,et al. Effect of Z-pin insertion angles on low-velocity impact mechanical response and damage mechanism of CFRP laminates with different layups[J]. Composites Part A:Applied Science and Manufacturing,2021,150(11):106593. [62] 邢一新. 飞机装配几何量质量检测体系构建及关键技术[J]. 航空制造技术,2021,64(6):24-31. XING Yixin. Research on establishment and key techniques of aircraft assembling geometric measurement system[J]. Aeronautical Manufacturing Technology,2021,64(6):24-31. [63] XU G,CHENG H,ZHANG K,et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Composite Structures,2020,194(9):108904. [64] 郭飞燕,刘检华,邹方,等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报,2019,55(17):110-132. GUO Feiyan,LIU Jianhua,ZOU Fang,et al. Research on the state-of-art,connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering,2019,55(17):110-132. [65] 刘检华,张志强,夏焕雄,等. 考虑表面形貌与受力变形的装配精度分析方法[J]. 机械工程学报,2021,57(3):207-219. LIU Jianhua,ZHANG Zhiqiang,XIA Huanxiong,et al. Assembly accuracy analysis with consideration of form defects and surface deformations[J]. Journal of Mechanical Engineering,2021,57(3):207-219. [66] 巩浩,刘检华,孙清超,等. 精密机电产品均匀性装配的定义与关键技术[J]. 机械工程学报,2021,57(3):174-184. GONG Hao,LIU Jianhua,SUN Qingchao,et al. Definition and key technologies of uniform assembly for precision electromechanical products[J]. Journal of Mechanical Engineering,2021,57(3):174-184. [67] 郭东明. 高性能制造[J]. 机械工程学报,2022,58(21):225-242. GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering,2022,58(21):225-242. [68] 王峻峰,李旺,付艳,等. 增强现实辅助装配人因适应性研究进展[J]. 机械工程学报,2022,58(18):16-30. WANG Junfeng,LI Wang,FU Yan,et al. Research progress on human factor adaptability in augmented reality assisted assembly[J]. Journal of Mechanical Engineering,2022,58(18):16-30. [69] 袁新立. 全国政协委员谭瑞松:航空工业要发挥引领作用,做制造业"数·智"解决方案供应商[N]. 中国航空新闻网[EB/OL]. (2021-10-1)[2023-4-25]. http://www.cannews.com.cn/2021/03/05/99321759.html. YUAN Xinli. Tan Ruisong,member of the CPPCC National Committee:The aviation industry should play a leading role and be a supplier of "digital·intelligence" solutions for the manufacturing industry[N]. China Aviation News Network[EB/OL].[2021-10-1]. http://www.cannews.com.cn/2021/03/05/99321759.html. [70] 中航西安飞机工业集团股份有限公司. 中航西飞总工程师系统2022年工作会[EB/OL]. (2022-03-10)[2023-4-25]. https://www.sohu.com/a/528793148_121123752. AVIC Xi'an Aircraft Industry Group Corporation,Ltd. China aviation xifei chief engineer system 2022 work conference[EB/OL]. (2022-03-10)[2023-4-25]. https://www.sohu.com/a/528793148_121123752. |
[1] | 陈克强, 姜兴宇, 刘伟军, 田志强, 徐效文, 李世磊, 索英祁. 面向多品种小批量制造过程的NAD-EWMA控制图多目标优化设计方法[J]. 机械工程学报, 2023, 59(3): 232-248. |
[2] | 王峻峰, 李旺, 付艳, 吴磊. 增强现实辅助装配人因适应性研究进展[J]. 机械工程学报, 2022, 58(18): 16-30. |
[3] | 薛松, 王从思, 连培园, 王艳, 许谦, 王娜, 赵武林, 王志海, 葛东明, 郑元鹏, 唐宝富, 冷国俊, 段宝岩. 面向波束指向的高频段大口径天线服役性能调控技术[J]. 机械工程学报, 2022, 58(17): 16-25. |
[4] | 郭鹏, 张新艳, 余建波. 基于深度强化学习与有限元仿真集成的拉深成形控制[J]. 机械工程学报, 2020, 56(20): 47-58. |
[5] | 郭飞燕, 刘检华, 邹方, 翟雨农, 王仲奇, 李少卓. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17): 110-132. |
[6] | 刘检华, 孙清超, 程晖, 刘小康, 丁晓宇, 刘少丽, 熊辉. 产品装配技术的研究现状、技术内涵及发展趋势[J]. 机械工程学报, 2018, 54(11): 2-28. |
[7] | 刘金林, 曾凡明, 杨立, 吴杰长, 李文剑, 王泰翔. 舰船轴系设计质量控制模型构建方法及应用研究[J]. 机械工程学报, 2018, 54(10): 211-217. |
[8] | 乔立红, 朱怡心, ANWER Nabil. 几何增强的装配工艺本体建模[J]. 机械工程学报, 2015, 51(22): 202-212. |
[9] | 洪军;郭俊康;刘志刚;武晓攀. 基于状态空间模型的精密机床装配精度预测与调整工艺[J]. , 2013, 49(6): 114-121. |
[10] | 林忠钦;来新民;金隼;王皓;朱利民;陈关龙. 复杂产品制造精度控制的数字化方法及其发展趋势[J]. , 2013, 49(6): 103-113. |
[11] | 王珉;曾长;陈文亮;余路;蒋红宇. 一种用于飞机装配的八足并联自主移动机构[J]. , 2013, 49(15): 49-54. |
[12] | 董钢;范秀敏;黄东明. 基于产品质量控制预测机制的圆锥破碎机优化方法[J]. , 2010, 46(3): 152-157. |
[13] | 杜世昌;奚立峰;潘尔顺. 面向质量控制的制造系统可诊断性分析[J]. , 2006, 42(5): 149-154. |
[14] | 方喜峰;赵良才;吴洪涛. 基于数据挖掘的产品质量控制建模方法[J]. , 2005, 41(11): 20-25. |
[15] | 刘检华;姚珺;宁汝新. 虚拟装配工艺规划实现技术研究[J]. , 2004, 40(6): 138-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||