• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (16): 400-411.doi: 10.3901/JME.2024.16.400

• 交叉与前沿 • 上一篇    下一篇

扫码分享

数据驱动的离散制造系统性能退化机理建模与预测控制方法研究

王文波1,2, 张映锋2, 顾寄南1, 张耿2, 完严1   

  1. 1. 江苏大学机械工程学院 镇江 212013;
    2. 西北工业大学工业工程与智能制造工信部重点实验室 西安 710072
  • 收稿日期:2023-11-06 修回日期:2024-04-08 出版日期:2024-08-20 发布日期:2024-10-21
  • 作者简介:王文波,男,1991年出生,博士,讲师。主要研究方向为智能制造系统优化、预测性生产控制。E-mail:wangwb@ujs.edu.cn
    张映锋(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为物联制造系统、产品服务系统与绿色制造、制造系统智能化。E-mail:zhangyf@nwpu.edu.cn
    顾寄南,男,1964年出生,博士,教授,博士研究生导师。主要研究方向为智能制造系统优化、智能机器人。E-mail:gjnan@ujs.edu.cn
    张耿,男,1991年出生,博士,副教授。主要研究方向为云制造、智能制造服务协同优化。E-mail:geng.zhang@nwpu.edu.cn
    完严,男,2001年出生。主要研究方向为智能制造系统,边云协同数据分析。E-mail:1805922513@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52105516)。

Research on Data-driven Performance Degradation Mechanism Modelling and Predictive Control Method for Discrete Manufacturing System

WANG Wenbo1,2, ZHANG Yingfeng2, GU Jinan1, ZHANG Geng2, WAN Yan1   

  1. 1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013;
    2. Key Laboratory of Industrial Engineering and Intelligent Manufacturing, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072
  • Received:2023-11-06 Revised:2024-04-08 Online:2024-08-20 Published:2024-10-21

摘要: 异常事件的主动感知与优化控制是制造系统可靠运行的关键。针对离散制造系统中生产环境不确定性强、关键性能退化规律复杂和数据云端融合时间长等带来的异常识别滞后与优化响应困难的问题,提出一种数据驱动的离散制造系统性能退化机理建模与预测控制方法体系。通过对基于边云协同的离散制造系统智能环境配置与性能提取、基于跨时空状态数据的制造系统关键性能退化机理建模、融合运维知识与预测性能的制造异常预警与主动优化控制等关键技术的深入分析和研究,建立一种具有边云协同交互决策能力的智能制造系统,并实现异常事件事前预警与主动自适应优化决策。所提体系架构和关键技术可以为下一代“智能工厂”的预测性控制方案的落地应用提供重要基础理论和技术支撑。

关键词: 智能制造, 自适应优化, 离散制造系统, 性能退化, 预测控制

Abstract: The active sensing and optimal control of abnormal events are the core issues to ensure the reliable operation of discrete manufacturing system. For a discrete manufacturing system, many uncertain factors exist in the production system, the degradation patterns of production performance are hard to describe, and the cloud-based data fusion methods consume a long time, as a result, the detection of abnormal events often delays and the optimal decisions are hard to find. To meet these requirements, it is provided a data-driven production performance degradation mechanism and predictive control method for discrete manufacturing system. Firstly, the industrial Internet of Things and Cyber Physical System technologies are combined to establish a cloud-edge cooperation environment and extract the key production performance information. Secondly, the degradation mechanism of production performance is modelled based on the fusion of spatial-temporal manufacturing data. Thirdly, the operational knowledge and predicted performance of manufacturing system will be combined to present an exception early-warning and proactively optimal control method. Then, the capacity of cloud-edge cooperation, early-warning of production exceptions and predictive and optimal control of smart discrete manufacturing system can be achieved. The proposed strategy, method and model provide the important support and technical reference for the predictive control of next generation smart factory.

Key words: smart manufacturing, self-adaptive optimization, discrete manufacturing system, performance degradation, predictive control

中图分类号: