机械工程学报 ›› 2022, Vol. 58 ›› Issue (18): 16-30.doi: 10.3901/JME.2022.18.016
王峻峰, 李旺, 付艳, 吴磊
收稿日期:
2021-10-29
修回日期:
2022-06-25
出版日期:
2022-09-20
发布日期:
2022-12-08
通讯作者:
王峻峰(通信作者),男,1970年出生,博士,教授,博士研究生导师。主要研究方向为建模仿真、数字化智能化装配、人机协作与交互。E-mail:wangjf@hust.edu.cn
作者简介:
李旺,男,1990年出生,博士研究生。主要研究方向为增强现实辅助装配;E-mail:liwangfl@163.com;付艳,女,1977年出生,博士,副教授,博士研究生导师。主要研究方向为人因工程、人的行为建模与仿真、人机混合智能系统;E-mail:lura_fy@hust.edu.cn;吴磊,男,1982年出生,博士,副教授,硕士研究生导师。主要研究方向为数字装备工业设计、交互界面与认知人因、服务与体验设计;E-mail:lei.wu@hust.edu.cn
基金资助:
WANG Junfeng, LI Wang, FU Yan, WU Lei
Received:
2021-10-29
Revised:
2022-06-25
Online:
2022-09-20
Published:
2022-12-08
摘要: 当前国内外增强现实技术的快速发展,为复杂多变的个性化产品装配过程和社会人力资源老龄化条件下的装配辅助提供了新的技术支撑。随着以人为本的智能制造理念的提出,增强现实辅助装配的人因适应性问题越来越多的得到工业界和学术界的广泛关注。分析人工装配过程中的复杂性要素,结合装配工艺信息的不同呈现方式,梳理总结装配工艺指导方式的发展阶段,提出增强现实辅助的第四代装配工艺指导方式;从装配工艺信息增强可视化呈现方式的人因效能、增强现实辅助装配的工作负荷测量、可用性与接受性评价、对装配操作者的个体适应性等方面对现有国内外研究进展进行了论述和分析;给出增强现实辅助装配在人因适应性研究方面的挑战和未来发展趋势。
中图分类号:
王峻峰, 李旺, 付艳, 吴磊. 增强现实辅助装配人因适应性研究进展[J]. 机械工程学报, 2022, 58(18): 16-30.
WANG Junfeng, LI Wang, FU Yan, WU Lei. Research Progress on Human Factor Adaptability in Augmented Reality Assisted Assembly[J]. Journal of Mechanical Engineering, 2022, 58(18): 16-30.
[1] ZHOU J,ZHOU Y,WANG B,ZHANG J. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering,2019,5(4):624-636. [2] 王柏村,臧冀原,屈贤明,等. 基于人-信息-物理系统(HCPS)的新一代智能制造研究[J]. 中国工程科学,2018,20(4):29-34. WANG Baicun,ZANG Jiyuan,QU Xianming,et al. Research on new-generation intelligent manufacturing based on human-cyber-physical systems[J]. Engineering Sciences,2018,20(4):29-34. [3] XU X,LU Y,BIRGIT V,WANG L H. Industry 4.0 and Industry 5.0 - Inception,conception and perception[J]. Journal of Manufacturing Systems,2021,61:530-535. [4] 窦惠婷,苏强,陶文昊. 汽车发动机装配过程中人为缺陷预测研究[J]. 工业工程与管理,2013,18(1):129-134. DOU Huiting,SU Qiang,TAO Wenhao. Study on prediction of the operator-induced defect rate for automobile engine assembling[J]. Industrial Engineering and Management,2013,18(1):129-134. [5] LU Y,ADRADOS J S,CHAND S S,WANG L. Humans are not machines-anthropocentric human-machine symbiosis for ultra-flexible smart manufacturing[J]. Engineering,2021(7):734-737. [6] 王柏村,薛塬,延建林,等. 以人为本的智能制造:理念、技术与应用[J]. 中国工程科学,2020,22(4):139-146. WANG Baicong,XUE Yuan,YAN Jianlin,et al. Human-centered intelligent manufacturing:Overview and perspectives[J]. Strategic Study of CAE,2020,22(4):139-146. [7] FAN G,LI A,ZHAO Y,et al. Human factors’ complexity measurement of human-based station of assembly line[J]. Human Factors and Ergonomics in Manufacturing,2018,28:342-351. [8] 孔繁森,叶正梗. 生产作业可操作性评价理论方法框架模型研究[J]. 机械工程学报,2017,53(4):198-208. KONG Fansen,YE Zhenggeng. Research on evaluation method framework model of production job operability[J]. Journal of Mechanical Engineering,2017,53(4):198-208. [9] CALZAVARA M,BATTINI D,BOGATAJ D,et al. Ageing workforce management in manufacturing systems:state of the art and future research agenda[J]. International Journal of Production Research,2020,58(3):729-747. [10] PERUZZINI M,PELLICCIARI M. A framework to design a human-centred adaptive manufacturing system for aging workers[J]. Advanced Engineering Informatics,2017,33:330-349. [11] CHANTZIARAS G,TRIANTAFYLLIDIS A,PAPAPRODROMOU A,et al. An augmented reality-based remote collaboration platform for worker assistance[C]//Proceedings of the International Conference on Pattern Recognition,January 10-15,2021,Milan,Italy. Berlin:Springer,2021:404-416. [12] RUPPERT T,JASKÓ S,HOLCZINGER T,ABONYI J. Enabling technologies for operator 4.0:A survey[J]. Applied Sciences,2018,8(9):1650. [13] 王柏村,黄思翰,易兵,等. 面向智能制造的人因工程研究与发展[J]. 机械工程学报,2020,56(16):240-253.WANG Baicun,HUANG Sihan,YI Bing,et al. State-of-art of human factors/ergonomics in intelligent manufacturing[J]. Journal of Mechanical Engineering,2020,56(16):240-253. [14] 唐健钧,叶波,耿俊浩. 飞机装配作业AR智能引导技术探索与实践[J]. 航空制造技术,2019,62(8):22-27.TANG Jianjun,YE Bo,GENG Junhao. Exploration and practice of aircraft assembly AR intelligent pilot technology[J]. Aeronautical Manufacturing Technology,2019,62(8):22-27. [15] 刘检华,孙清超,程晖,等. 产品装配技术的研究现状、技术内涵及发展趋势[J]. 机械工程学报,2018,54(11):1-28.LIU Jianhua,SUN Qingchao,CHENG Hui,et al. The state-of-the-art,connotation and developing trends of the products assembly technology[J]. Journal of Mechanical Engineering,2018,54(11):1-28. [16] STORK S,SCHUBÖ A. Human cognition in manual assembly:Theories and applications[J]. Advanced Engineering Informatics,2010,24:320-328. [17] RICHARDSON M,JONES G,TORRANCE M,et al. Identifying the task variables that predict object assembly difficulty[J]. Human Factors,2006,48(3):511-525. [18] SAMY S N,ELMARAGHY H. A model for measuring products assembly complexity[J]. International Journal of Computer Integrated Manufacturing,2010,23(11):1015-1027. [19] SU Q,LIU L,WHITNEY D E. A systematic study of the prediction model for operator-induced assembly defects based on assembly complexity factors[J]. IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2010,40(1):107-120. [20] 孔繁森,赵凯丽,陆俊睿,等. 结构件装配复杂性分析的框架及其在装配质量缺陷率预测中的应用[J]. 计算机集成制造系统,2017,23(12):108-118.KONG Fansen,ZHAO Kaili,LU Junrui,et al. Analytical framework of structure assembly complexity and its application on prediction model of assembly quality defect rate[J]. Computer Integrated Manufacturing Systems,2017,23(12):108-118. [21] FAST-BERGLUND A,FÄSSBERG T,HELLMAN F,et al. Relations between complexity,quality and cognitive automation in mixed-model assembly[J]. Journal of Manufacturing Systems,2013,32(3):449-455. [22] 聂利民. 基于人因失误分析的机电产品装配过程中质量控制[D]. 衡阳:南华大学,2013.NIE Limin. Quality control in mechanical and electrical product assembly process based on human error analysis[D]. Hengyang:Nanhua University,2013. [23] 李爱平,陆嘉庆,赵亚西,等. 发动机装配线人工工位的人因时变可靠性建模[J]. 同济大学学报,2017,10:73-80.LI Aiping,LU Jiaqing,ZHAO Yaxi,et al. Human time variant reliability modeling of manual station on engine assembly line[J]. Journal of Tongji University,2017,45(10):1483-1490. [24] ALKAN B. An experimental investigation on the relationship between perceived assembly complexity and product design complexity[J]. International Journal on Interactive Design and Manufacturing,2019,13:1145-1157. [25] SOCHOR R,KRAUS L,MERKEL L,et al. Approach to increase worker acceptance of cognitive assistance systems in manual assembly[J]. Procedia CIRP,2019,81:926-931. [26] KELLER T,BEHLING M,STOCKINGER C,et al. Analysis of the influence of process complexity and employee competence on the effect of digital assistance in industrial assembly[J]. Production Engineering,2021,15:1-8. [27] BLÄSING D,BORNEWASSER M. Influence of increasing task complexity and use of informational assistance systems on mental workload[J]. Brain Sciences,2021,11(1):102. [28] PETZOLDT C,KEISER D,BEINKE T,et al. Functionalities and implementation of future informational assistance systems for manual assembly[C]//Proceedings of International Conference on Subject-Oriented Business Process Management,December 02-03,2020,Bremen,German. Berlin:Springer,2020:88-109. [29] WOLFARTSBERGER J,HALLEWELL HASLWANTER J D,LINDORFER R. Perspectives on assistive systems for manual assembly tasks in industry[J]. Technologies,2019,7(1):12. [30] Hallewell Haslwanter J D,Blazevski B. Experiences with an assistive system for manual assembly[C]//Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference,June 26-29,2018,Corfu,Greece. New York:ACM,2018:46-49. [31] AGRAWALA M,PHAN D,HEISER J,et al. Designing effective step-by-step assembly instructions[J]. ACM Transactions on Graphics,2003,22(3):828-837. [32] Menn J P,Seliger G. Increasing knowledge and skills for assembly processes through interactive 3D-PDFs [J]. Procedia CIRP,2016,48:454-459. [33] DAVID D,UWE T,RUTH G. Reducing the split-attention effect in assembly based instruction by merging physical parts with holograms in mixed reality[C]//Proceedings of the 10th International Conference on Computer Supported Education,March 15-18,2018,Funchal,Portugal. Setúbal:SciTePress,2018:235-244. [34] CHANDAN K S,YOUNG C,RAI R. Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications:A review[J]. International Journal of Production Research,2021,59:4903-4959. [35] MATTSSON S,FAST-BERGLUND A,LI D,et al. Forming a cognitive automation strategy for Operator 4.0 in complex assembly[J]. Computers & Industrial Engineering,2020,139:105360. [36] COHEN Y,NASERALDIN H,CHAUDHURI A,et al. Assembly systems in industry 4.0 era:a road map to understand assembly 4.0[J]. International Journal of Advanced Manufacturing Technology,2019,105(1):4037-4054. [37] CARDOSO L,MARIANO F,ZORZAL E. A survey of industrial augmented reality[J]. Computers & Industrial Engineering,2020,139:106159. [38] EGGER J,MASOOD T. Augmented reality in support of intelligent manufacturing - A systematic literature review[J]. Computers & Industrial Engineering,2020,140:106195. [39] BÉGOUT P,DUVAL T ,KUBICKI S,et al. WAAT:A workstation ar authoring tool for industry 4.0[C]//Proceddings of International Conference on Augmented Reality,Virtual Reality,and Computer Graphics,September 7-10,2020,Lecce,Italy. Berlin:Springer,2020:304-320. [40] IDEK K,LAZORÍK P,PITE J,et al. Automated training of convolutional networks by virtual 3d models for parts recognition in assembly process[C]//Proceedings of International Scientific Technical Conference Manufacturing,May 19-22,2019,Poznan,Poland. Berlin:Springer,2019:287-297. [41] LI W,WANG J,JIAO S,et al. Fully convolutional network-based registration for augmented assembly systems[J]. Journal of Manufacturing Systems,2021,61:673-684. [42] WANG X,ONG S K,NEE A Y C. A comprehensive survey of augmented reality assembly research[J]. Advances in Manufacturing,2016(4):1-22. [43] CHANDAN K,YOUNG C,RAI R. Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications:A review[J]. International Journal of Production Research,2021,59(16):4903-4959. [44] UVA A E,GATTULLO M,MANGHISI V M,et al. Evaluating the effectiveness of spatial augmented reality in smart manufacturing:A solution for manual working stations[J]. International Journal of Advanced Manufacturing Technology,2018,94:509-521. [45] GIRIDHAR M P,LASIN,PANICKER V V. Experimental analysis of cognitive issues impacting manual assembly task[C]//Proceedings of International Conference on System,Computation,Automation and Networking,July 03-04,2020,Pondicherry,India.New York:IEEE,2020,1-6. [46] LAVRIC T,BRICARD E,PREDA M,et al. An industry-adapted AR training method for manual assembly operations[C]//Proceedings of International Conference on Human-Computer Interaction,July 24-29,2021,Banff,Canada. Berlin:Springer,2021:282-304. [47] Marques B,Alves J,Neves M,et al. Interaction with virtual content using augmented reality:A user study in assembly procedures[J]. Proceedings of the ACM on Human-Computer Interaction,2020(4):196.1-196.17. [48] SIMÕES B,DE AMICIS R,BARANDIARAN I,et al. Cross reality to enhance worker cognition in industrial assembly operations[J]. International Journal of Advanced Manufacturing Technology,2019,105(9):3965-3978. [49] 魏巍,冯蓬勃,陈峥廷,等. 增强现实辅助装配技术综述[J]. 包装工程,2021,42(14):108-118. WEI Wei,FENG Pengbo,CHEN Zhengting,et al. Survey of augmented reality assisted assembly technology[J]. Packaging Engineering,2021,42(14):108-118. [50] LI W,WANG J,JIAO S,et al. Research on the visual elements of augmented reality assembly processes[J]. Virtual Reality & Intelligent Hardware,2019,1(6):622-634. [51] Wu L,Su Y,Wang J. Influence of visual symbol's user background and symbol semantic abstraction level on user’s cognition in AR auxiliary assembly environment[C]//Proceedings of the 22nd International Conference on Human-Computer Interaction,July 19-24,2020,Copenhagen,Denmark,Berlin:Springer,2020:LNCS 12425,127-137. [52] JOHANSSON P,MALMSKÖLD L,FAST-BERGLUND Å,et al. Challenges of handling assembly information in global manufacturing companies[J]. Journal of Manufacturing Technology Management,2020,31(5):955-9767. [53] 李旺,王峻峰,蓝珊,等. 增强现实装配工艺信息内容编辑技术[J]. 计算机集成制造系统,2019,25(7):1676-1684.LI Wang,WANG Junfeng,LAN Shan,et al. Content authoring of augmented reality assembly process[J]. Computer Integrated Manufacturing Systems,2019,25(7):1676-1684. [54] GATTULLO M,SCURATI G W,EVANGELISTA A,et al. Informing the use of visual assets in industrial augmented reality[C]//Proceedings of International Conference of the Italian Association of Design Methods and Tools for Industrial Engineering,September 9-10,2019,Modena,Italy. Berlin:Springer,2019:106-117. [55] GATTULLO M,EVANGELISTA A,UVA A,et al. What,how,and why are visual assets used in industrial augmented reality? a systematic review and classification in maintenance,assembly,and training (from 1997 to 2019)[J]. IEEE Transactions on Visualization and Computer Graphics,2022,28(2):1443-1456. [56] NAKANISHI M. Human factor guideline for applying AR-based manuals in industry[J]. Augmented Reality,2010(1):129-156. [57] GATTULLO M,UVA A,FIORENTINO M,et al. Legibility in industrial AR:Text style,color coding,and illuminance[J]. Computers in Industry,2015,70:70-78. [58] BROLIN A,PETER THORVALD P,CASE K. Experimental study of cognitive aspects affecting human performance in manual assembly[J]. Production & Manufacturing Research,2017,5(1):141-163. [59] SCURATI G W,GATTULLO M,FIORENTINO M,et al. Converting maintenance actions into standard symbols for augmented reality applications in Industry 4.0[J]. Computers in Industry,2018,98:68-79. [60] RADKOWSKI R,HERREMA J,OLIVER J. Augmented Reality-based manual assembly support with visual features for different degrees of difficulty[J]. International Journal of Human-Computer Interaction,2015,31(5):337-349. [61] HENDERSON S,FEINER S. Augmented reality in the psychomotor phase of a procedural task[C]//Proceedings of IEEE International Symposium on Mixed & Augmented Reality,October 26-29,2012,Basel,Switzerland. New York:IEEE,2012:191-200. [62] MURA M D,DINI G. An augmented reality approach for supporting panel alignment in car body assembly[J]. Journal of Manufacturing Systems,2021,59:251-260. [63] WANG Z,BAI X,ZHANG S,et al. Information-level AR instruction a novel assembly guidance information representation assisting user cognition[J]. International Journal of Advanced Manufacturing Technology,2020,106:603-626. [64] YANG Z,SHI J,JIANG W,et al. Influences of augmented reality assistance on performance and cognitive loads in different stages of assembly task[J]. Frontiers in Psychology,2019,10:1703. [65] 隋躍馨. 增强现实辅助信息呈现方式对装配任务的影响[D]. 杭州:浙江理工大学,2019.SUI Yuexin. The influence of augmented reality on task process and performance of object assembly[D]. Hangzhou:Zhejiang Sci-tech University,2019. [66] MUTLU D,COSGUN V,ALTAN T. Cognitive load in multimedia learning environments:A systematic review[J]. Computers and Education,2019,141:103618. [67] 安其梅,吴红. 认知负荷理论综述[J]. 心理学进展,2015,5(1):50-55.AN Qimei,WU Hong. A review of cognitive load theory[J]. Advances in Psychology,2015,5(1):50-55. [68] DESHPANDE A,KIM I. The effects of augmented reality on improving spatial problem solving for object assembly[J]. Advanced Engineering Informatics,2018,38:760-775. [69] MOGHADDAM M,WILSON N C,MODESTINO A,et al. Exploring augmented reality for worker assistance versus training[J]. Advanced Engineering Informatics,2021,50(4):101410. [70] CHU C H,LIAO C J,LIN S C. Comparing augmented reality-assisted assembly functions-A case study on Dougong structure[J]. Applied Sciences,2020,10: 3383. [71] WILSCHUT E S,KÖNEMANN R,MURPHY M S,et al. Evaluating learning approaches for product assembly:Using chunking of instructions,spatial augmented reality and display based work instructions[C]//Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments,June 5-7,2019,Rhodes,Greece. New York:ACM,2019:376-381. [72] ALVES J B,MARQUES B,FERREIRA C,et al. Comparing augmented reality visualization methods for assembly procedures[J]. Virtual Reality,2022,26:235-248. [73] AROMAA S,VÄÄTÄNEN A,HAKKARAINEN M,et al. User experience and user acceptance of an augmented reality based knowledge-sharing solution in industrial maintenance work[C]//Proceedings of International Conference on Usability and User Experience,July 17-21,2017,Los Angeles,USA. Berlin:Springer,2017:145-156. [74] PATRIARCA R,RAMOS M,PALTRINIERI N,et al. Human reliability analysis:Exploring the intellectual structure of a research field[J]. Reliability Engineering & System Safety,2020,203:107102. [75] ARINDAM D,MARK B,ROBERT W,et al. A systematic review of 10 years of augmented reality usability studies 2005 to 2014[J]. Frontiers in Robotics and AI,2018(5):37. [76] RODRIGUEZ F S,SALEEM K,SPILSKI J,et al. Performance differences between instructions on paper vs digital glasses for a simple assembly task[J]. Applied Ergonomics,2021,94:103423. [77] GAVISH N,GUTIÉRREZ T,WEBEL S,et al. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks[J]. Interactive Learning Environments,2015,23(6):778-798. [78] HOU L,WANG X,BERNOLD L,et al. Using animated augmented reality to cognitively guide assembly[J]. Journal of Computing in Civil Engineering,2013,27(5):439-451. [79] MIGUEL M,IVÁN R R,DODERO J M,et al. Augmented reality mobile app development for all[J]. Computers & Electrical Engineering,2018,65:250-260. [80] GERDENITSCH C,MENEWEGER T,STOCKREITER C,et al. Experiencing an augmented-reality assisted assembly task autonomy,passive work attitude,and responsibility[J]. Journal of Corporate Real Estate,2022,24(1):59-72. [81] FLORIAN S,BASTIAN E,UWE S,et al. Human acceptance evaluation of AR-assisted assembly scenarios[J]. Journal of Manufacturing Systems,2021,60:660-672. [82] HSU Y,GAO Y,LIU T C,et al. Interactions between levels of instructional detail and expertise when learning with computer simulations[J]. Educational Technology & Society,2015,18(4):113-127. [83] HOLM M,DANIELSSON O,SYBERFELDT A,et al. Adaptive instructions to novice shop-floor operators using augmented reality[J]. Journal of Industrial and Production Engineering,2017,34(5):362-374. [84] MOURTZIS D,ZOGOPOULOS V. An adaptive framework for augmented reality instructions considering workforce skill[J]. Procedia CIRP,2019,81:363-368. [85] SIEW C Y,ONG S K,NEE A Y C. A practical augmented reality-assisted maintenance system framework for adaptive user support[J]. Robotics and Computer-Integrated Manufacturing,2019,59:115-129. [86] GENG J H,SONG X Y,PAN Y T,et al. A systematic design method of adaptive augmented reality work instruction for complex industrial operations[J]. Computers in Industry,2020,119:103229. [87] ZOLOTOVÁ I,PAPCUN P,KAJÁTI E,et al. Smart and cognitive solutions for Operator 4.0:Laboratory H-CPPS case studies[J]. Computers and Industrial Engineering,2020,139:105471. [88] Kong X T R,Luo H,Huang G Q,et al. Industrial wearable system:The human-centric empowering technology in industry 4.0[J]. Journal of Intelligent Manufacturing,2019,30:2853-2869. [89] QUANDT M,FREITAG M. A systematic review of user acceptance in industrial augmented reality[J]. Frontiers in Education,2021(6):700760. [90] MASOOD T,EGGER J. Augmented reality in support of Industry 4.0-Implementation challenges and success factors[J]. Robotics & Computer Integrated Manufacturing,2019,58:181-195. [91] EGGER J,MASOOD T. Augmented reality in support of intelligent manufacturing-A systematic literature review[J]. Computers & Industrial Engineering,2020,140:106195.1-106195.22. [92] WOLFARTSBERGER J,HEIML M,SCHWARZ G,et al. Multi-modal visualization of working instructions for assembly operations[J]. International Journal of Industrial and Manufacturing Engineering,2019,13(2):107-112. [93] MASOOD T,EGGER J. Adopting augmented reality in the age of industrial digitalisation[J]. Computers in Industry,2020,115:103112. [94] TAINAKA K,FUJIMOTO Y,KANBARA M,et al. Guideline and tool for designing an assembly task support system using augmented reality [C]// Proceedings of IEEE International Symposium on Mixed and Augmented Reality,November 09-13,2020,Porto de Galinhas,Brazil. New York:IEEE,2020:486-497. [95] GATTULLO M,DALENAV,EVANGELISTA A,et al. A context-aware technical information manager for presentation in augmented reality[C]// Proceedings of IEEE Conference on Virtual Reality and 3D User Interfaces,March 23-27,2019,Osaka,Japan. New York:IEEE,2019:939-940. [96] 董琼,李斌,董剑,等. 面向头戴式眼镜的增强现实装配语音交互实现[J]. 制造业自动化,2020,42(10):77-80.DONG Qiong,LI Bin,DONG Jian,et al. Realizaiton of augmented reality assembly voic interaction for head-mounted glasses[J]. Manufacturing Automation,2020,42(10):77-80. [97] FUNK M,BACHLER A,BACHLER L,et al. Comparing projected in-situ feedback at the manual assembly workplace with impaired workers[C]//Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments,July 01-03,2015,Corfu,Greece. New York:ACM,2015:1-8. [98] COSTANTINO F,FALEGNAMI A,FEDELE L,et al. New and emerging hazards for health and safety within digitalized manufacturing systems[J]. Sustainability,2021,13(19):10948. [99] CHIHARA T,SEO A. Evaluation of physical workload affected by mass and center of mass of head-mounted display[J]. Applied Ergonomics,2018,68:204-212. [100] VOVK A,WILD F,GUEST W,et al. Simulator sickness in augmented reality training using the microsoft hololens[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems,April 21-26,2018,Montreal QC,Canada. New York:ACM,2018:209.1-209.9. [101] DROUOT M,BIGOT N L,BOLLOC H J,et al. The visual impact of augmented reality during an assembly task[J]. Displays,2021,66:101987. [102] SUNWOOK K,NUSSBAUM M A,GABBARD J L. Augmented reality “smart glasses” in theworkplace:Industry perspectives and challenges for worker safety and health[J]. IIE Transactions on Occupational Ergonomics and Human Factors,2016(4):253-258. [103] CHEN Z,BAO J,ZHENG X,et al. Assembly information model based on knowledge graph[J]. Journal of Shanghai Jiaotong University (Science),2020,25:578-588. [104] LI W,WANG J,JIAO S,et al. Augmented assembly work instruction knowledge graph for adaptive presentation[C]// Proceedings of the 14th International Conference on Intelligent Robotics and Applications,October 22-25,2021,Yantai,China. Berlin:Springer,2021,793-803. [105] LAVIOLA E,GATTULLO M,MANGHISI V M,et al. Minimal AR:visual asset optimization for the authoring of augmented reality work instructions in manufacturing [J]. International Journal of Advanced Manufacturing Technology,2022,119:1769-1784. [106] RHO G,CALLARA A L,CONDINO S,et al. A preliminary quantitative EEG study on augmented reality guidance of manual tasks[C]//Proceedings of the IEEE International Symposium on Medical Measurements and Applications,June 01,2020,Bari,Italy. Piscataway:IEEE,2020:1-5. |
[1] | 李英田, 童鑫, 陈星宇, 莫菲, 孙众卿, 高兴, 王磊, 周小虎. 适应性气管支架植入机器人系统设计与验证[J]. 机械工程学报, 2024, 60(17): 72-79. |
[2] | 郑湃, 李成熙, 殷悦, 张荣, 鲍劲松, 王柏村, 谢海波, 王力翚. 增强现实辅助的互认知人机安全交互系统[J]. 机械工程学报, 2023, 59(6): 173-184. |
[3] | 胡炳涛, 冯毅雄, 刘继红, 郭伟, 谭建荣. 面向“互联网+”定制产品的智能适应性设计研究[J]. 机械工程学报, 2023, 59(12): 109-125. |
[4] | 杜安, 郭盛, 陈亚琼. 多并联机构均载稳定平台地面适应性研究[J]. 机械工程学报, 2021, 57(5): 40-51. |
[5] | 王柏村, 黄思翰, 易兵, 鲍劲松. 面向智能制造的人因工程研究与发展[J]. 机械工程学报, 2020, 56(16): 240-253. |
[6] | 程永亮, 钟掘, 暨智勇, 梅勇兵. TBM刀盘地质适应性设计方法及其应用[J]. 机械工程学报, 2018, 54(1): 1-9. |
[7] | 夏文涵, 王凯, 李彦, 熊艳. 基于TRIZ的管道机器人自适应检测模块创新设计[J]. 机械工程学报, 2016, 52(5): 58-67. |
[8] | 周思阳, 亢一澜, 苏翠侠, 张茜. 基于力学分析的TBM掘进总推力预测模型研究*[J]. 机械工程学报, 2016, 52(20): 76-82. |
[9] | 杨飞;陶建国;邓宗全;黎佳俊. 六轮探测车多约束四边形悬架的仿马折展研究[J]. , 2014, 50(5): 1-9. |
[10] | 龚勋;冯毅雄;谭建荣;郏维强. 环境胁迫响应的潜在故障适应性修复方法[J]. , 2013, 49(21): 89-99. |
[11] | 王田苗;张韬懿;梁建宏;陈蛟. 基于再生能源的极地漫游机器人研究及现场试验[J]. , 2013, 49(19): 21-30. |
[12] | 柳刚;李俊岳;李桓;韩国明. 以电弧光谱信号传感MIG/MAG焊熔滴过渡的工艺适应性[J]. , 2000, 36(10): 50-53. |
[13] | 檀润华;张瑞红;苑彩云;徐安平. 自底向上的适应性设计过程模型[J]. , 2000, 36(1): 20-23. |
[14] | 黄克正;艾兴;李剑峰;张承瑞. 展成滚刀廓形的适应性设计原理及应用[J]. , 1997, 33(4): 88-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||