机械工程学报 ›› 2022, Vol. 58 ›› Issue (18): 31-55.doi: 10.3901/JME.2022.18.031
杨俊儒1, 褚端峰1, 陆丽萍2, 王金湘3, 吴超仲1, 殷国栋3
收稿日期:
2021-12-01
修回日期:
2022-05-15
出版日期:
2022-09-20
发布日期:
2022-12-08
通讯作者:
褚端峰(通信作者),男,1983年出生,博士,研究员,博士研究生导师。主要研究方向为自动驾驶、车路协同。E-mail:chudf@whut.edu.cn
作者简介:
杨俊儒,男,1994年出生,博士研究生。主要研究方向为车辆辅助驾驶与自动驾驶、车辆动力学控制;E-mail:yangjr@whut.edu.cn;陆丽萍,女,1977年出生,博士,副教授。主要研究方向为自动驾驶、车路协同;E-mail:luliping@whut.edu.cn ;王金湘,男,1979年出生,博士,副教授,博士研究生导师。主要研究方向为车辆动力学及控制、智能车辆路径规划与控制;E-mail:wangjx@seu.edu.cn;吴超仲,男,1972年出生,博士,教授,博士研究生导师。主要研究方向为交通安全、智能交通、车路协同、智能网联汽车;E-mail:wucz@whut.edu.cn;殷国栋,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为车辆动力学与控制、智能网联汽车;E-mail:ygd@seu.edu.cn
基金资助:
YANG Junru1, CHU Duanfeng1, LU Liping2, WANG Jinxiang3, WU Chaozhong1, YIN Guodong3
Received:
2021-12-01
Revised:
2022-05-15
Online:
2022-09-20
Published:
2022-12-08
摘要: 智能汽车人机共享控制由人类和机器共同完成驾驶任务,通过人机智能混合增强,保障行车安全,提升驾驶性能。对当前人机共享控制的研究现状及其概念进行梳理;从客观风险评估指标和考虑驾驶员因素论述人机共享控制权决策方法,分析直接式和间接式2种共享控制方式的特点和应用范围,讨论5种共享控制方法的优点和局限性,并总结人机共享控制性能评价指标;指出人机共享控制存在的问题和未来研究方向。分析表明,将机器学习与现有的基于模型的方法相结合,综合考虑驾驶员信息、车辆状态、动态环境对行车风险影响,是未来人机共享控制的研究方向。此外,建立健全自动驾驶预期功能安全测试标准和评价体系,通过预期功能安全认证,保障行车安全,是商业化应用的关键。
中图分类号:
杨俊儒, 褚端峰, 陆丽萍, 王金湘, 吴超仲, 殷国栋. 智能汽车人机共享控制研究综述[J]. 机械工程学报, 2022, 58(18): 31-55.
YANG Junru, CHU Duanfeng, LU Liping, WANG Jinxiang, WU Chaozhong, YIN Guodong. Review on Human-machine Shared Control of Intelligent Vehicles[J]. Journal of Mechanical Engineering, 2022, 58(18): 31-55.
[1] PADEN B,ČÁP M,YONG S Z,et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles,2016,1(1):33-55. [2] Xing Y,Huang C,LÜ C. Driver-automation collaboration for automated vehicles:A review of human-centered shared control[C]// IEEE. 2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas:IEEE,2020:1964-1971. [3] 严利鑫,吴超仲,贺宜,等. 人机共驾智能车驾驶模式决策属性析取研究[J]. 中国公路学报,2018,31(1):120-127. YAN Lixin,WU Chaozhong,HE Yi,et al. Research on impact factors extraction for driving mode of intelligent vehicle[J]. China Journal of Highway and Transport,2018,31(1):120-127. [4] SAE On-Road Automated Vehicle Standards Committee. SAE J3016,Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[S]. Warrendale,PA:SAE International,2021. [5] 国家市场监督管理总局,国家标准化管理委员会. 汽车驾驶自动化分级:GB/T 40429-2021[S]. 北京:中国标准出版社,2021. State Administration for Market Regulation,Standardization Administration. GB/T 40429—2021 Taxonomy of driving automation for vehicles[S]. Beijing:Standards Press of China,2021. [6] ENDSLEY M R. Situation awareness in future autonomous vehicles:Beware of the unexpected[C]// Springer. Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). Florence:Springer,2018:303-309. [7] BROWN B,LAURIER E. The trouble with autopilots:Assisted and autonomous driving on the social road[C]// ACM Press. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver:ACM Press,2017:416-429. [8] GOGOLL J,MÜLLER J F. Autonomous cars:In favor of a mandatory ethics setting[J]. Science and Engineering Ethics,2017,23(3):681-700. [9] 吴超仲,吴浩然,吕能超. 人机共驾智能汽车的控制权切换与安全性综述[J]. 交通运输工程学报,2018,18(6):131-141. WU Chaozhong,WU Haoran,LÜ Nengchao. Review of control switch and safety of human-computer driving intelligent vehicle[J]. Journal of Traffic and Transportation Engineering,2018,18(6):131-141. [10] KABER D B,ENDSLEY M R. The effects of level of automation and adaptive automation on human performance,situation awareness and workload in a dynamic control task[J]. Theoretical Issues in Ergonomics Science,2004,5(2):113-153. [11] WANG W,NA X,CAO D,et al. Decision-making in driver-automation shared control:A review and perspectives[J]. IEEE/CAA Journal of Automatica Sinica,2020,7(5):1289-1307. [12] MUSLIM H,ITOH M. A theoretical framework for designing human-centered automotive automation systems[J]. Cognition,Technology & Work,2019,21(4):685-697. [13] 胡云峰,曲婷,刘俊,等. 智能汽车人机协同控制的研究现状与展望[J]. 自动化学报,2019,45(7):1261-1280. HU Yunfeng,QU Ting,LIU Jun,et al. Human-machine cooperative control of intelligent vehicle:Recent developments and future perspectives[J]. Acta Automatica Sinica,2019,45(7):1261-1280. [14] FRIDMAN L. Human-centered autonomous vehicle systems:Principles of effective shared autonomy [EB/OL]. [2021-06-01]. http://atxiv. org/pdf/181001835. pdf. [15] SHERIDAN T B,VERPLANK W L. Human and computer control of undersea teleoperators[R]. Arlington:Massachusetts Inst of Tech Cambridge Man-Machine Systems Lab,1978. [16] PARASURAMAN R,SHERIDAN T B,WICKENS C D. A model for types and levels of human interaction with automation[J]. IEEE Transactions on Systems,Man,and Cybernetics - Part A:Systems and Humans,2000,30(3):286-297. [17] SHERIDAN T B,PARASURAMAN R. Human-automation interaction[J]. Reviews of Human Factors and Ergonomics,2005,1(1):89-129. [18] GOODRICH M A,SCHULTZ A C. Human-robot interaction:A survey[M]. Hanover:Now Publishers Inc,2008. [19] ABBINK D A,CARLSON T,MULDER M,et al. A topology of shared control systems—finding common ground in diversity[J]. IEEE Transactions on Human-Machine Systems,2018,48(5):509-525. [20] FLEMISCH F,ABBINK D A,ITOH M,et al. Joining the blunt and the pointy end of the spear:Towards a common framework of joint action,human–machine cooperation,cooperative guidance and control,shared,traded and supervisory control[J]. Cognition,Technology & Work,2019,21(4):555-568. [21] MARCANO M,DÍAZ S,PÉREZ J,et al. A review of shared control for automated vehicles:theory and applications[J]. IEEE Transactions on Human-Machine Systems,2020,50(6):475-491. [22] 戴廷飞,刘邈,叶阳阳,等. 人机共享控制机器人系统的应用与发展[J]. 仪器仪表学报,2019,40(3):62-73. DAI Tingfei, LIU Miao, YE Yangyang,et al. Application and development of human-machine shared control robot system[J]. Chinese Journal of Scientific Instrument,2019,40(3):62-73. [23] FLEMISCH F,ABBINK D,ITOH M,et al. Shared control is the sharp end of cooperation:Towards a common framework of joint action,shared control and human machine cooperation[J]. IFAC-PapersOnLine,2016,49(19):72-77. [24] 李仁杰. 人机共驾型智能汽车的共享控制方法研究[D]. 北京:清华大学,2018. LI Renjie. Study on shared control method for driver-automation coopeartive driving in highly automated vehicles[D]. Beijing:Tsinghua University,2018. [25] 宗长富,代昌华,张东. 智能汽车的人机共驾技术研究现状和发展趋势[J]. 中国公路学报,2021,34(6):214-237. ZONG Changfu,DAI Changhua,ZHANG Dong. Huamn-machine interaction technology of intelligent vehicles:current development trends and future directions[J]. China Journal of Highway and Transport,2021,34(6):214-237. [26] GODTHELP H,MILGRAM P,BLAAUW G J. The development of a time-related measure to describe driving strategy[J]. Human Factors,1984,26(3):257-268. [27] LEE D N. A theory of visual control of braking based on information about time-to-collision[J]. Perception,1976,5(4):437-459. [28] WAKASUGI T. A study on warning timing for lane change decision aid systems based on driver’s lane change maneuver[C]//National Highway Traffic Safety Administration. 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV). Washington DC:NHTSA,2005:05-0290. [29] 朱西产,魏昊舟,马志雄. 基于自然驾驶数据的跟车场景潜在风险评估[J]. 中国公路学报,2020,33(4):169-181. ZHU Xichan,WEI Haozhou,MA Zhixiong. Assessment of the potential risk in car-following scenario based on naturalistic driving data[J]. China Journal of Highway and Transport,2020,33(4):169-181. [30] 王雪松,朱美新,邢祎伦. 基于自然驾驶数据的避撞预警对跟车行为影响[J]. 同济大学学报,2016,44(7):1045-1051. WANG Xuesong,ZHU Meixin,XING Yilun. Impacts of collision warning system on car-following behavior based on naturalistic driving data[J]. Journal of Tongji University,2016,44(7):1045-1051. [31] LI M,SONG X,CAO H,et al. Shared steering control combined with driving intention for vehicle obstacle avoidance[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2018,233(11):2791-2808. [32] JULA H,KOSMATOPOULOS E B,IOANNOU P A. Collision avoidance analysis for lane changing and merging[J]. IEEE Transactions on Vehicular Technology,2000,49(6):2295-2308. [33] 王世明,徐建闽,罗强,等. 面向高速公路的车辆换道安全预警模型[J]. 华南理工大学学报,2014,42(12):40-50. WANG Shiming,XU Jianmin,LUO Qiang,et al. A safety warning model for lane changing on highway[J]. Journal of South China University of Technology,2014,42(12):40-50. [34] ROSSETTER E J,GERDES J C. Lyapunov based performance guarantees for the potential field lane-keeping assistance system[J]. Journal of Dynamic Systems,Measurement,and Control,2005,128(3):510-522. [35] WOLF M T,BURDICK J W. Artificial potential functions for highway driving with collision avoidance[C]// IEEE. 2008 IEEE International Conference on Robotics and Automation. Pasadena:IEEE,2008:3731-3736. [36] RASEKHIPOUR Y,KHAJEPOUR A,CHEN S,et al. A potential field-based model predictive path-planning controller for autonomous road vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(5):1255-1267. [37] HUANG Z,CHU D,WU C,et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(3):959-974. [38] 徐杨,陆丽萍,褚端峰,等. 无人车辆轨迹规划与跟踪控制的统一建模方法[J]. 自动化学报,2019,45(4):799-807. XU Yang,LU Liping,CHU Duanfeng,et al. Unifled modeling of trajectory planning and tracking for unmanned vehicle[J]. Acta Automatica Sinica,2019,45(4):799-807. [39] LI H,WU C,CHU D,et al. Combined trajectory planning and tracking for autonomous vehicle considering driving styles[J]. IEEE Access,2021,9:9453-9463. [40] WANG J,WU J,LI Y. The Driving safety field based on driver-vehicle-road interactions[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(4):2203-2214. [41] 王建强,吴剑,李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报,2016,29(1):105-114. WANG Jianqiang,WU Jian,LI Yang. Concept,principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport,2016,29(1):105-114. [42] WANG J,WU J,ZHENG X,et al. Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C:Emerging Technologies,2016,72:306-324. [43] HUANG H,WANG J,FEI C,et al. A probabilistic risk assessment framework considering lane-changing behavior interaction[J]. Science China Information Sciences,2020,63(9):190203. [44] OMAE M,FUJIOKA T,HASHIMOTO N,et al. The application of rtk-gps and steer-by-wire technology to the automatic driving of vehicles and an evaluation of driver behavior[J]. IATSS Research,2006,30(2):29-38. [45] WANG J,DAI M,YIN G,et al. Output-feedback robust control for vehicle path tracking considering different human drivers’ characteristics[J]. Mechatronics,2018,50:402-412. [46] MCRUER D T,JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics,1967,HFE-8(3):231-249. [47] WIERWILLE W W,GAGNE G A,KNIGHT J R. An experimental study of human operator models and closed-loop analysis methods for high-speed automobile driving[J]. IEEE Transactions on Human Factors in Electronics,1967,HFE-8(3):187-201. [48] WEIR D H,MCRUER D T. Dynamics of driver vehicle steering control[J]. Automatica,1970,6(1):87-98. [49] MACADAM C C. An Optimal preview control for linear systems[J]. Journal of Dynamic Systems Measurement & Control,1980,102(3):188-190. [50] 郭孔辉. 驾驶员—汽车闭环系统操纵运动的预瞄最优曲率模型[J]. 汽车工程,1984(3):1-16. GUO Konghui. Drivers-vehicle close loop simulation of handing by “preselect optimal curvature method”[J]. Automotive Engineering,1984(3):1-16. [51] GUO K,GUAN H. Modelling of driver/vehicle directional control system[J]. Vehicle System Dynamics,1993,22(3-4):141-184. [52] 丁海涛,郭孔辉,李飞,等. 基于加速度反馈的任意道路和车速跟随控制驾驶员模型[J]. 机械工程学报,2010,46(10):116-120,125. DING Haitao,GUO Konghui,LI Fei,et al. Arbitrary path and speed following driver model based on vehicle acceleration feedback[J]. Journal of Mechanical Engineering,2010,46(10):116-120,125. [53] HUANG M,GAO W,WANG Y,et al. Data-driven shared steering control of semi-autonomous vehicles[J]. IEEE Transactions on Human-Machine Systems,2019,49(4):350-361. [54] 刘凯,龚建伟,陈舒平,等. 高速无人驾驶车辆最优运动规划与控制的动力学建模分析[J]. 机械工程学报,2018,54(14):141-151. LIU Kai,GONG Jianwei,CHEN Shuping,et al. Dynamic modeling analysis of optimal motion planning and control for high-speed self-driving vehicles[J]. Journal of Mechanical Engineering,2018,54(14):141-151. [55] QU T,CHEN H,CAO D,et al. Switching-based stochastic model predictive control approach for modeling driver steering skill[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(1):365-375. [56] DENG Z,CHU D,WU C,et al. A probabilistic model for driving-style-recognition-enabled driver steering behaviors[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52(3):1838-1851. [57] GUO L,JIA Y. Inverse model predictive control (IMPC) based modeling and prediction of human-driven vehicles in mixed traffic[J]. IEEE Transactions on Intelligent Vehicles,2021,6(3):501-512. [58] WANG W,XI J,HEDRICK J K. A Learning-based personalized driver model using bounded generalized gaussian mixture models[J]. IEEE Transactions on Vehicular Technology,2019,68(12):11679-11690. [59] YE Y,ZHANG X,SUN J. Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment[J]. Transportation Research Part C:Emerging Technologies,2019,107:155-170. [60] ZHAO X,HE R,WANG J. How do drivers respond to driving risk during car-following? Risk-response driver model and its application in human-like longitudinal control[J]. Accident Analysis & Prevention,2020,148:105783. [61] WANG Z,LIAO X,WANG C,et al. Driver behavior modeling using game engine and real vehicle:A learning-based approach[J]. IEEE Transactions on Intelligent Vehicles,2020,5(4):738-749. [62] WANG J,FANG Z,DAI M,et al. Robust steering assistance control for tracking large-curvature path considering uncertainties of driver’s steering behavior[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2021,235(7):2013-2028. [63] AKIN M,KURT M B,SEZGIN N,et al. Estimating vigilance level by using EEG and EMG signals[J]. Neural Computing and Applications,2008,17(3):227-236. [64] PATEL M,LAL S K L,KAVANAGH D,et al. Applying neural network analysis on heart rate variability data to assess driver fatigue[J]. Expert Systems with Applications,2011,38(6):7235-7242. [65] KAR S,BHAGAT M,ROUTRAY A. EEG signal analysis for the assessment and quantification of driver’s fatigue[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2010,13(5):297-306. [66] 王琳,化成城,姜鑫,等. 基于颈腰部肌电及脑电信号的疲劳驾驶检测[J]. 东北大学学报,2018,39(1):102-107. WANG Lin,HUA Chengcheng,JIANG Xin,et al. investigation on driver fatigue testing based on the combination of cervical-lumbar EMG and EEG[J]. Journal of Northeastern University,2018,39(1):102-107. [67] MURUGAN S,SELVARAJ J,SAHAYADHAS A. Detection and analysis:Driver state with electrocardiogram (ECG)[J]. Physical and Engineering Sciences in Medicine,2020,43(2):525-537. [68] WU Y,WEI H,CHEN X,et al. Adaptive authority allocation of human-automation shared control for autonomous vehicle[J]. International Journal of Automotive Technology,2020,21:541-553. [69] LI Z,BAO S,KOLMANOVSKY I V,et al. Visual-manual distraction detection using driving performance indicators with naturalistic driving data[J]. IEEE Transactions on Intelligent Transportation Systems,2018,19(8):2528-2535. [70] 郭烈,葛平淑,夏文旭,等. 基于人机共驾的车道保持辅助控制系统研究[J]. 中国公路学报,2019,32(12):46-57. GUO Lie,GE Pingshu,XIA Wenxu,et al. Lane-keeping control systems based on human-machine cooperative driving[J]. China Journal of Highway and Transport,2019,32(12):46-57. [71] 蔡素贤,杜超坎,周思毅,等. 基于车辆运行数据的疲劳驾驶状态检测[J]. 交通运输系统工程与信息,2020,20(4):77-82. CAI Suxian,DU Chaokan,ZHOU Siyi,et al. Fatigue driving state detection based on vehicle running data[J]. Journal of Transportation Systems Engineering and Information Technology,2020,20(4):77-82. [72] 孙剑,张一豪,王俊骅. 基于自然驾驶数据的分心驾驶行为识别方法[J]. 中国公路学报,2020,33(9):225-235. SUN Jian,ZHANG Yihao,WANG Junhua. Detecting distraction behavior of drivers using naturalistic driving data[J]. China Journal of Highway and Transport,2020,33(9):225-235. [73] SAITO Y,ITOH M,INAGAKI T. Driver assistance system with a dual control scheme:effectiveness of identifying driver drowsiness and preventing lane departure accidents[J]. IEEE Transactions on Human-Machine Systems,2016,46(5):660-671. [74] HIRAYAMA T,MASE K,MIYAJIMA C,et al. Classification of driver's neutral and cognitive distraction states based on peripheral vehicle behavior in driver’s gaze transition[J]. IEEE Transactions on Intelligent Vehicles,2016,1(2):148-157. [75] SAVAŞ B K,BECERIKLI Y. Real time driver fatigue detection system based on multi-task connn[J]. IEEE Access,2020(8):12491-12498. [76] NGUYEN A,SENTOUH C,POPIEUL J. Driver-automation cooperative approach for shared steering control under multiple system constraints:design and experiments[J]. IEEE Transactions on Industrial Electronics,2017,64(5):3819-3830. [77] TANG F,GAO F,WANG Z. Driving Capability-based transition strategy for cooperative driving:From manual to automatic[J]. IEEE Access,2020(8):139013-139022. [78] JIANG J,ASTOLFI A. Shared-control for a rear-wheel drive car:dynamic environments and disturbance rejection[J]. IEEE Transactions on Human-Machine Systems,2017,47(5):723-734. [79] 高振刚,陈无畏,谈东奎,等. 考虑驾驶员操纵失误的车道偏离辅助人机协同控制[J]. 机械工程学报,2019,55(16):91-103. GAO Zhengang,CHEN Wuwei,TAN Dongkui,et al. Human-machine cooperative lane departure assist control considering driver manipulate failure[J]. Journal of Mechanical Engineering,2019,55(16):91-103. [80] KUMAR P,PERROLLAZ M,LEFÈVRE S,et al. Learning-based approach for online lane change intention prediction[C]// IEEE. 2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast:IEEE,2013:797-802. [81] BI L,WANG C,YANG X,et al. Detecting driver normal and emergency lane-changing intentions with queuing network-based driver models[J]. International Journal of Human–Computer Interaction,2015,31(2):139-145. [82] WU H,LI Y,WU C,et al. A longitudinal minimum safety distance model based on driving intention and fuzzy reasoning[C]// IEEE. 2017 4th International Conference on Transportation Information and Safety (ICTIS). Banff:IEEE,2017:158-162. [83] DENG Q,SALEH M,TANSHI F,et al. Online intention recognition applied to real simulated driving maneuvers[C]// IEEE. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). Victoria:IEEE,2020:1-6. [84] LI X,WANG W,ROETTING M. Estimating driver’s lane-change intent considering driving style and contextual traffic[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(9):3258-3271. [85] XING Y,LV C,LIU Y,et al. Hybrid-learning-based driver steering intention prediction using neuromuscular dynamics[J]. IEEE Transactions on Industrial Electronics,2022,69(2):1750-1761. [86] 刘志强,吴雪刚,倪捷,等. 基于HMM和SVM级联算法的驾驶意图识别[J]. 汽车工程,2018,40(7):858-864. LIU Zhiqiang,WU Xuegang,NI Jie,et al. Driving intention recognition based on hmm and svm cascade algorithm[J]. Automotive Engineering,2018,40(7):858-864. [87] 田彦涛,赵凤凯,聂光明. 考虑驾驶习惯的驾驶员换道意图识别[J]. 吉林大学学报,2020,50(6):2266-2273. TIAN Yantao,ZHAO Fengkai,NIE Guangming. Driver’s lane change intention recognition considering driving habits[J]. Journal of Jilin University,2020,50(6):2266-2273. [88] KIM D J,KIM J S,YANG J H,et al. Lane change intention classification of surrounding vehicles utilizing open set recognition[J]. IEEE Access,2021(9):57589-57602. [89] WEI Z,WANG C,HAO P,et al. Vision-based lane-changing behavior detection using deep residual neural network[C]// IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland:IEEE,2019:3108-3113. [90] ZHU B,HAN J,ZHAO J,et al. Combined hierarchical learning framework for personalized automatic lane-changing[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(10):6275-6285. [91] 季学武,费聪,何祥坤,等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报,2019,32(6):34-42. JI Xuewu,FEI Cong,HE Xiangkun,et al. Intention recognition and trajectory prediction for vehicles using lstm network[J]. China Journal of Highway and Transport,2019,32(6):34-42. [92] XING Y,LV C,WANG H,et al. An ensemble deep learning approach for driver lane change intention inference[J]. Transportation Research Part C:Emerging Technologies,2020,115:102615. [93] 杨建喜,郁超顺,李韧,等. 基于多周期组件时空神经网络的路网通行速度预测[J]. 交通运输系统工程与信息,2021,21(3):112-119,139. YANG Jianxi,YU Chaoshun,LI Ren,et al. Traffic network speed prediction via multi-periodic- componentspatial-temporal neural network[J]. Journal of Transportation Systems Engineering and Information Technology,2021,21(3):112-119,139. [94] YAN Z,YANG K,WANG Z,et al. Intention-based lane changing and lane keeping haptic guidance steering system[J]. IEEE Transactions on Intelligent Vehicles,2021,6(4):622-633. [95] LI L L,YANG B,LIANG M,et al. End-to-end contextual perception and prediction with interaction transformer[C]// IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas:IEEE,2021:5784-5791. [96] TRAN D,DU J,SHENG W,et al. A human-vehicle collaborative driving framework for driver assistance[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(9):3470-3485. [97] LI M,CAO H,SONG X,et al. Shared control driver assistance system based on driving intention and situation assessment[J]. IEEE Transactions on Industrial Informatics,2018,14(11):4982-4994. [98] GUO C,SENTOUH C,POPIEUL J C,et al. Predictive shared steering control for driver override in automated driving:A simulator study[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2019,61:326-336. [99] PROFUMO L,POLLINI L,ABBINK D A. Direct and indirect haptic aiding for curve negotiation[C]// IEEE. 2013 IEEE International Conference on Systems,Man,and Cybernetics. Manchester:IEEE,2013:1846-1852. [100] STEELE M,GILLESPIE R B. Shared control between human and machine:Using a haptic steering wheel to aid in land vehicle guidance[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,2001,45(23):1671-1675. [101] GRIFFITHS P G,GILLESPIE R B. Sharing control between humans and automation using haptic interface:Primary and secondary task performance benefits[J]. Human Factors,2005,47(3):574-590. [102] ABBINK D A,MULDER M,BOER E R. Haptic shared control:Smoothly shifting control authority?[J]. Cognition,Technology & Work,2012,14(1):19-28. [103] ABBINK D A,MULDER M. Exploring the dimensions of haptic feedback support in manual control[J]. Journal of Computing and Information Science in Engineering,2009,9(1):011006. [104] ABBINK D A,MULDER M. Neuromuscular analysis as a guideline in designing shared control[M]//Advances in Haptics,Mehrdad Hosseini Zadeh (Ed),New York:InTech,2010. [105] PENNA M D,PAASSEN M M V,ABBINK D A,et al. Reducing steering wheel stiffness is beneficial in supporting evasive maneuvers[C]// IEEE. 2010 IEEE International Conference on Systems,Man and Cybernetics. Istanbul:IEEE,2010:1628-1635. [106] 谈东奎,陈无畏,王家恩,等. 基于人机共享和分层控制的车道偏离辅助系统[J]. 机械工程学报,2015,51(22):98-110. TAN Dongkui,CHEN Wuwei,WANG Jiaen et al. Human-machine sharing and hierarchical control based lane departure assistance system[J]. Journal of Mechanical Engineering,2015,51(22):98-110. [107] WANG Z,SUGA S,NACPIL E J C,et al. Adaptive driver-automation shared steering control via forearm surface electromyography measurement[J]. IEEE Sensors Journal,2021,21(4):5444-5453. [108] MARTÍNEZ-GARCÍA M,KALAWSKY R S,GORDON T,et al. Communication and interaction with semiautonomous ground vehicles by force control steering[J]. IEEE Transactions on Cybernetics,2021,51(8):3913-3924. [109] ZAFEIROPOULOS S,TSIOTRAS P. Design of a lane-tracking driver steering assist system and its interaction with a two-point visual driver model[C]// IEEE. 2014 American Control Conference. Portland:IEEE,2014:3911-3917. [110] ANDERSON S J,KARUMANCHI S B,IAGNEMMA K. Constraint-based planning and control for safe,semi-autonomous operation of vehicles[C]// IEEE. 2012 IEEE Intelligent Vehicles Symposium. Alcalá de Henares:IEEE,2012:383-388. [111] ANDERSON S J,KARUMANCHI S B,IAGNEMMA K,et al. The intelligent copilot:A constraint-based approach to shared-adaptive control of ground vehicles[J]. IEEE Intelligent Transportation Systems Magazine,2013,5(2):45-54. [112] ANDERSON S J,WALKER J M,IAGNEMMA K. Experimental performance analysis of a homotopy-based shared autonomy framework[J]. IEEE Transactions on Human-Machine Systems,2014,44(2):190-199. [113] ERLIEN S M,FUJITA S,GERDES J C. Safe driving envelopes for shared control of ground vehicles[J]. IFAC Proceedings Volumes,2013,46(21):831-836. [114] ERLIEN S M,FUNKE J,GERDES J C. Incorporating non-linear tire dynamics into a convex approach to shared steering control[C]// IEEE. 2014 American Control Conference. Portland:IEEE,2014:3468-3473. [115] ERLIEN S M,FUJITA S,GERDES J C. Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(2):441-451. [116] LI R,LI Y,LI S E,et al. Driver-automation indirect shared control of highly automated vehicles with intention-aware authority transition[C]// IEEE. 2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles:IEEE,2017:26-32. [117] DAI M,WANG J,CHEN N,et al. Fuzzy steering assistance control for path following of the steer-by-wire vehicle considering characteristics of human driver[C]// IEEE. 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu:IEEE,2018:892-897. [118] YU L,ABI L,LU Z,et al. Shared control strategy for vehicle stability on u-split road[C]// American Society of Mechanical Engineers. 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim:ASME,2019:V003T01A023. [119] WANG W,XI J,LIU C,et al. Human-centered feed-forward control of a vehicle steering system based on a driver's path-following characteristics[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(6):1440-1453. [120] ZHANG H,ZHAO W. Two-way H∞ control method with a fault-tolerant module for steer-by-wire system[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,232(1):42-56. [121] MA B,LIU Y,NA X,et al. A shared steering controller design based on steer-by-wire system considering human-machine goal consistency[J]. Journal of the Franklin Institute,2019,356(8):4397-4419. [122] PEROZZI G,SENTOUH C,FLORIS J,et al. On nonlinear control for lane keeping assist system in steer-by-wire road wheeled vehicles[J]. IFAC-PapersOnLine,2020,53(2):15332-15337. [123] HUANG C,NAGHDY F,DU H,et al. Shared control of highly automated vehicles using steer-by-wire systems[J]. IEEE/CAA Journal of Automatica Sinica,2019,6(2):410-423. [124] ZHAO W,WANG A,ZOU S,et al. Individual auxiliary and fault-tolerant control of steer-by-wire system considering different drivers steering characteristics[J]. IEEE/ASME Transactions on Mechatronics,2021,26(3):1558-1569. [125] SALEH L,CHEVREL P,CLAVEAU F,et al. Shared steering control between a driver and an automation:Stability in the presence of driver behavior uncertainty[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(2):974-983. [126] ERCAN Z,CARVALHO A,GOKASAN M,et al. Modeling,identification,and predictive control of a driver steering assistance system[J]. IEEE Transactions on Human-Machine Systems,2017,47(5):700-710. [127] MERAH A,HARTANI K,DRAOU A. A new shared control for lane keeping and road departure prevention[J]. Vehicle System Dynamics,2016,54(1):86-101. [128] ITOH M,INAGAKI T,TANAKA H. Haptic steering direction guidance for pedestrian-vehicle collision avoidance[C]// IEEE. 2012 IEEE International Conference on Systems,Man,and Cybernetics (SMC). Seoul:IEEE,2012:3327-3332. [129] CHEN W,ZHAO L,TAN D,et al. Human–machine shared control for lane departure assistance based on hybrid system theory[J]. Control Engineering Practice,2019,84:399-407. [130] BENLOUCIF A,NGUYEN A T,SENTOUH C,et al. Cooperative trajectory planning for haptic shared control between driver and automation in highway driving[J]. IEEE Transactions on Industrial Electronics,2019,66(12):9846-9857. [131] IWANO K,RAKSINCHAROENSAK P,NAGAI M. A study on shared control between the driver and an active steering control system in emergency obstacle avoidance situations[J]. IFAC Proceedings Volumes,2014,47(3):6338-6343. [132] LIU J,CHEN H,GUO H,et al. Moving horizon shared steering strategy for intelligent vehicle based on potential-hazard analysis[J]. IET Intelligent Transport Systems,2019,13(3):541-550. [133] NGUYEN A,SENTOUH C,POPIEUL J. Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[J]. IEEE/ASME Transactions on Mechatronics,2018,23(1):5-16. [134] BORRONI F,TANELLI M. A weighting approach to the shared-control of lateral vehicle dynamics[J]. IFAC-PapersOnLine,2018,51(9):305-310. [135] 何仁,赵晓聪,杨奕彬,等. 基于驾驶人风险响应机制的人机共驾模型[J]. 吉林大学学报,2021,51(3):799-809. HE Ren,ZHAO Xiaocong,YANG Yibin,et al. Man-machine shared driving model using risk-response mechanism of human driver[J]. China Journal of Highway and Transport,2021,51(3):799-809. [136] LI M,CAO H,LI G,et al. A two-layer potential-field-driven model predictive shared control towards driver-automation cooperation[J]. IEEE Transactions on Intelligent Transportation Systems,2020:1-17. [137] JIANG Y,ZHANG X,XU X,et al. Event-triggered shared lateral control for safe-maneuver of intelligent vehicles[J]. Science China Information Sciences,2021,64(7):172203. [138] TIAN Y,ZHAO Y,SHI Y,et al. The indirect shared steering control under double loop structure of driver and automation[J]. IEEE/CAA Journal of Automatica Sinica,2020:1-14. [139] LI R,LI Y,LI S E,et al. Indirect shared control for cooperative driving between driver and automation in steer-by-wire vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(2):7826-7836. [140] CAO M,HU C,WANG R,et al. Compensatory model predictive control for post-impact trajectory tracking via active front steering and differential torque vectoring[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2021,235(4):903-919. [141] SCHWARTING W,ALONSO-MORA J,PAULI L,et al. Parallel autonomy in automated vehicles:Safe motion generation with minimal intervention[C]// IEEE. 2017 IEEE International Conference on Robotics and Automation (ICRA). Marina Bay Sands:IEEE,2017:1928-1935. [142] SCHWARTING W,ALONSO-MORA J,PAULL L,et al. Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model[J]. IEEE Transactions on Intelligent Transportation Systems,2018,19(9):2994-3008. [143] SONG L,GUO H,WANG F,et al. Model predictive control oriented shared steering control for intelligent vehicles[C]// IEEE. 2017 29th Chinese Control And Decision Conference (CCDC). Chongqing:IEEE,2017:7568-7573. [144] GUO H,SONG L,LIU J,et al. Hazard-evaluation-oriented moving horizon parallel steering control for driver-automation collaboration during automated driving[J]. IEEE/CAA Journal of Automatica Sinica,2018,5(6):1062-1073. [145] HUANG C,LV C,NAGHDY F,et al. Reference-free approach for mitigating human–machine conflicts in shared control of automated vehicles[J]. IET Control Theory & Applications,2020,14(18):2752-2763. [146] BAO C,FENG J,WU J,et al. Model predictive control of steering torque in shared driving of autonomous vehicles[J]. Science Progress,2020,103(3):0036850420950138. [147] 陈虹,郭洋洋,刘俊,等. 基于驾驶状态预测的人机力矩协同转向控制器设计[J]. 控制与决策,2019,34(11):2390-2396. CHEN Hong,GUO Yangyang,LIU Jun,et al. Design of human-vehicle torque collaborative steering controller based on driving state prediction[J]. Control and Decision,2019,34(11):2390-2396. [148] LU Y,BI L,LI H. Model predictive-based shared control for brain-controlled driving[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(2):630-640. [149] MA W-H,PENG H. Worst-case vehicle evaluation methodology – examples on truck rollover/jackknifing and active yaw control systems[J]. Vehicle System Dynamics,1999,32(4-5):389-408. [150] TAMADDONI S H,TAHERI S,Ahmadian M. Optimal preview game theory approach to vehicle stability controller design[J]. Vehicle System Dynamics,2011,49(12):1967-1979. [151] NA X,COLE D J. Linear quadratic game and non-cooperative predictive methods for potential application to modelling driver–AFS interactive steering control[J]. Vehicle System Dynamics,2013,51(2):165-198. [152] JI X,YANG K,NA X,et al. Shared steering torque control for lane change assistance:A stochastic game-theoretic approach[J]. IEEE Transactions on Industrial Electronics,2019,66(4):3093-3105. [153] LI M,SONG X,CAO H,et al. Shared control with a novel dynamic authority allocation strategy based on game theory and driving safety field[J]. Mechanical Systems and Signal Processing,2019,124:199-216. [154] NA X,COLE D J. Game-theoretic modeling of the steering interaction between a human driver and a vehicle collision avoidance controller[J]. IEEE Transactions on Human-Machine Systems,2015,45(1):25-38. [155] NA X,COLE D J. Application of open-loop stackelberg equilibrium to modeling a driver’s interaction with vehicle active steering control in obstacle avoidance[J]. IEEE Transactions on Human-Machine Systems,2017,47(5):673-685. [156] JI X,YANG K,NA X,et al. Feedback game-based shared control scheme design for emergency collision avoidance:A fuzzy-linear quadratic regulator approach[J]. Journal of Dynamic Systems,Measurement,and Control,2019,141(8):081005. |
[1] | 李立建, 杨朋霖, 姚建涛, 李冰, 王迎佳. 柔性并联多维力传感器协同优化设计[J]. 机械工程学报, 2024, 60(19): 20-31. |
[2] | 林晨, 何智成, 黄怡菲, 林智桂, 付广, 黄晋. 多级参数融合网络的驾驶场景目标检测方法研究[J]. 机械工程学报, 2024, 60(10): 64-75. |
[3] | 曾迪, 郑玲, 李以农, 杨显通. 自动驾驶奖励函数贝叶斯逆强化学习方法[J]. 机械工程学报, 2024, 60(10): 245-260. |
[4] | 王明昊, 汪满新. 一种新型五自由度混联机器人动力学建模与性能评价[J]. 机械工程学报, 2023, 59(9): 63-75. |
[5] | 王永胜, 刘金鑫, 卜德旭, 江发潮, 罗禹贡. 智能汽车显式沟通下的交互式行人穿行行为预测[J]. 机械工程学报, 2023, 59(8): 151-162. |
[6] | 彭湃, 耿可可, 王子威, 柳智超, 殷国栋. 智能汽车环境感知方法综述[J]. 机械工程学报, 2023, 59(20): 281-303. |
[7] | 燕润博, 孙立清, 杨瑞鑫, 熊瑞. 锂离子电池外部短路电压行为预测模型评价[J]. 机械工程学报, 2023, 59(2): 199-211. |
[8] | 臧勇, 蔡英凤, 孙晓强, 徐兴, 陈龙, 王海. 基于可拓博弈的智能汽车轨迹跟踪协调控制方法研究[J]. 机械工程学报, 2022, 58(8): 181-194. |
[9] | 韩嘉懿, 赵健, 朱冰. 面向智能汽车人机协同转向控制的强化学习变阻抗人机交互方法[J]. 机械工程学报, 2022, 58(18): 141-149. |
[10] | 张利鹏, 苏泰, 严勇. 基于采样区域优化的智能车辆轨迹规划方法[J]. 机械工程学报, 2022, 58(14): 276-287. |
[11] | 孟齐志, 谢福贵, 张赛, 刘辛军. 高速高加速并联机器人构型与尺度参数设计[J]. 机械工程学报, 2022, 58(13): 36-49. |
[12] | 梁艺潇, 李以农, KHAJEPOUR Amir, 郑玲. 基于转向与主动横摆力矩协调的四轮驱动智能电动汽车路径跟踪控制[J]. 机械工程学报, 2021, 57(6): 142-155. |
[13] | 张志达, 郑玲, 李以农, 吴行, 余颖弘. 基于鲁棒自适应SCKF的智能汽车目标状态跟踪研究[J]. 机械工程学报, 2021, 57(20): 181-193. |
[14] | 张雷, 王子浩, 孙逢春, 王震坡. 四轮轮毂电机驱动智能电动汽车转向失效容错控制研究[J]. 机械工程学报, 2021, 57(20): 141-152. |
[15] | 王明强, 王震坡, 张雷. 基于碰撞风险评估的智能汽车局部路径规划方法研究[J]. 机械工程学报, 2021, 57(10): 28-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||