• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (20): 141-152.doi: 10.3901/JME.2021.20.141

• 运载工程 • 上一篇    下一篇

扫码分享

四轮轮毂电机驱动智能电动汽车转向失效容错控制研究

张雷1,2, 王子浩1,2, 孙逢春1,2, 王震坡1,2   

  1. 1. 北京理工大学电动车辆国家工程实验室 北京 100081;
    2. 北京理工大学北京电动车辆协同创新中心 北京 100081
  • 收稿日期:2020-09-07 修回日期:2021-05-20 出版日期:2021-10-20 发布日期:2021-12-15
  • 通讯作者: 王震坡(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车动力学理论与控制以及车用锂离子动力电池成组理论与技术。E-mail:wangzhenpo@bit.edu.cn
  • 作者简介:张雷,男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为智能网联新能源汽车整车动力学控制及储能系统管理技术等。E-mail:lei_zhang@bit.edu.cn;王子浩,男,1996年出生。主要研究方向为分布式驱动电动汽车动力学控制。E-mail:534278371@qq.com;孙逢春,男,1958年出生,博士,教授,博士研究生导师,中国工程院院士。E-mail:sunfch@bit.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFB0103600)和北京市科技新星计划(Z201100006820007)资助项目。

Fault-tolerant Control for Intelligent Four-wheel-independently-actuated Electric Vehicles under Complete Steer-by-wire System Failure

ZHANG Lei1,2, WANG Zihao1,2, SUN Fengchun1,2, WANG Zhenpo1,2   

  1. 1. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081;
    2. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081
  • Received:2020-09-07 Revised:2021-05-20 Online:2021-10-20 Published:2021-12-15

摘要: 四轮轮毂电机驱动电动汽车各轮驱动力矩独立可控,可通过控制前轴左右两轮的力矩差实现前轮转向。以四轮轮毂电机驱动智能电动汽车为研究对象,针对线控转向系统执行机构失效时的轨迹跟踪和横摆稳定性协同控制问题,提出一种基于差动转向与直接横摆力矩协同的容错控制方法。该方法采用分层控制架构,上层控制器首先基于时变线性模型预测控制方法求解期望前轮转角和附加横摆力矩,然后考虑转向执行机构建模不确定性以及路面干扰,设计基于滑模变结构控制的前轮转角跟踪控制策略。下层控制器以轮胎负荷率最小化为目标,利用有效集法实现四轮转矩优化分配。最后,分别在高速换道和双移线工况下仿真验证了该控制方法的有效性和实时性。

关键词: 智能汽车, 四轮轮毂电机驱动电动汽车, 线控转向系统, 容错控制, 差动转向, 轨迹跟踪

Abstract: Intelligent four-wheel-independently-actuated electric vehicles can realize front-wheel steering via the driving torque differential of the front-axle wheels. In order to ensure the trajectory tracking performance and vehicle dynamics stability under the circumstances of steer-by-wire system actuator failure, a fault-tolerant control method based on driving torque differential of the front-axle wheels and direct yaw-moment control(DYC) is proposed. It adopts a hierarchical structure and consists of an upper and a lower controller. In the upper controller, the time-varying model prediction control is first proposed to generate the reference steering wheel angle and the additional yaw moment to realize precise trajectory tracking. Then, a sliding mode controller is synthesized to calculate the driving torque differential considering various nonlinear constraints and steering actuator modelling uncertainty. In the lower controller, the optimal torque allocation is realized with the objective of tire load minimization based on the effective set algorithm. The simulation results show that the proposed method can realize accurate trajectory tracking while ensuring vehicle dynamics stability under complete steer-by-wire system failure in the high-speed lane-changing and double lane change maneuvers. The real-time performance indicates that it has the potential to be embedded in a realistic vehicle controller for practical implementation.

Key words: intelligent vehicles, four-wheel-independently-actuated electric vehicles, steer-by-wire system, fault-tolerant control, differential drive assistant steering, trajectory tracking

中图分类号: