[1] 白光晗,张驰,兑红炎,等.无人机集群任务可靠性建模及重要度分析[J].机械工程学报, 2022, 58(10):361-373. BAI Guanghan, ZHANG Chi, DUI Hongyan, et al. Reliability modeling and importance analysis of UAV swarm[J]. Journal of Mechanical Engineering, 2022, 58(10):361-373. [2] 吴西涛,魏超,翟建坤,等.考虑横摆稳定性的无人车轨迹跟踪控制优化研究[J].机械工程学报, 2022, 58(6):130-142. WU Xitao, WEI Chao, ZHAI Jiankun, et al. Study on the optimization of autonomous vehicle on path-following considering yaw stability[J]. Journal of Mechanical Engineering, 2022, 58(6):130-142. [3] YANG S, XI L, HAO J, et al. Aerodynamic-parameter identification and attitude control of quad-rotor model with CIFER and adaptive LADRC[J]. Chinese Journal of Mechanical Engineering, 2021, 34(2):1. [4] CHU W, WUNIRI Q, DU X, et al. Cloud control system architectures, technologies and applications on intelligent and connected vehicles:a review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(5):139. [5] 鲁亚飞,陈清阳,王鹏,等.中小型固定翼无人机精确回收技术发展与关键技术分析[J].飞航导弹, 2020(4):59-65. LU Yafei, CHEN Qingyang, WANG Peng, et al. Development and key technology analysis of precise recovery technology for small and medium-sized fixed wing UAV[J]. Aerodynamic Missile Journal, 2020(4):59-65. [6] MAZA I, CABALLERO F, CAPITAB J, et al. Experimental results in multi-UAV coordination for disaster management and civil security applications[J]. Journal of Intelligent & Robotic Systems, 2011, 61:563-585. [7] WYLLIE T. Parachute recovery for UAV systems[J]. Aircraft Engineering and Aerospace Technology, 2001, 73(6):542-551. [8] KIM H J, KIM M, LIM H, et al. Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1320-1333. [9] BORNEBUSH M F, JOHANSEN T A. Autonomous recovery of a fixed-wing UAV using a line suspended between two multirotor UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(1):90-104. [10] PATRUNO C, NITTI M, PETITTI A, et al. A vision-based approach for unmanned aerial vehicle landing[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):645-664. [11] REDDING J D, MCLAIN T W, BEARD R W, et al. Vision-based target localization from a fixed-wing miniature air vehicle[C]//IEEE American Control Conference, June 14-16, 2006, Minneapolis, MN, USA. IEEE, 2006:2862-2867. [12] SHARP C S, SHAKERNIA O, SASTRY S S. A vision system for landing an unmanned aerial vehicle[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, May 21-26, 2001. Seoul, Korea. IEEE, 2001:1720-1727. [13] KONG W, ZHOU D, ZHANG Y, et al. A ground-based optical system for autonomous landing of a fixed wing UAV[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. September 14-18, 2014, Chicago, IL, USA. IEEE, 2014:4797-4804. [14] ACHTELIK M, ZHANG T, KUHNLENZ K, et al. Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors[C]//2009 International Conference on Mechatronics and Automation, August 9-12, 2009. Changchun, China. IEEE, 2009:2863-2869. [15] KALINOV I, SAFRONOV E, AGISHEV R, et al. High-precision UAV localization system for landing on a mobile collaborative robot based on an IR marker pattern recognition[C]//2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 28 April-01 May, 2019. Kuala Lumpur, Malaysia. IEEE, 2019:1-6. [16] YU Xianjia, LI Qingqing, QUERALTA J P, et al. Cooperative uwb-based localization for outdoors positioning and navigation of UAVs aided by ground robots[C]//2021 IEEE International Conference on Autonomous Systems (ICAS), August 11-13, 2021. Montreal, QC, Canada. IEEE, 2021:1-5. [17] 伍明,孙继银.基于扩展式卡尔曼滤波的移动机器人未知环境下动态目标跟踪[J].机器人, 2010, 32(3):334-343. WU Ming, SUN Jiyin. Extended Kalman filter based moving object tracking by mobile robot in unknown environment[J]. Robot, 2010, 32(3):334-343. [18] JAYASREE K R, JAYASREE P R, VIVEK A. Dynamic target tracking using a four wheeled mobile robot with optimal path planning technique[C]//2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT),April 20-21,2017. Kollam,India. IEEE, 2017:1-6. [19] WEI Y, ZHU D, CHU Z. Underwater dynamic target tracking of autonomous underwater vehicle based on MPC algorithm[C]//2018 IEEE 8th International Conference on Underwater System Technology:Theory and Applications (USYS), December 1-3, 2018. Wuhan, China. IEEE, 2018:1-5. [20] QUINTERO S A P, COPP D A, HESPANHA J P. Robust coordination of small UAVs for vision-based target tracking using output-feedback MPC with MHE[J]. Cooperative Control of Multi-Agent Systems:Theory and Applications, 2017(1):51-83. [21] ASHE A, KRISHNA K M. Dynamic target tracking & collision avoidance behaviour of person following robot using model predictive control[C]//2020 24th International Conference on System Theory, Control and Computing (ICSTCC), October 8-10, 2020. Sinaia, Romania. IEEE, 2020:660-666. [22] FASSE E D, GOSSELIN C M. Spatio-geometric impedance control of gough-stewart platforms[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2):281-288. [23] DAVLIAKOS I, PAPADOPOULOS E. A model-based impedance control of a 6-DOF electrohydraulic Stewart platform[C]//2007 European Control Conference (ECC), July 2-5, 2007. Kos, Greece. IEEE, 2007:3507-3514. [24] ZHANG Hao, WANG Shoukun, YAN Z, et al. Stewart-inspired posture control for a UAV undertaking platform based on dynamic model predictive control[C]//2021 China Automation Congress (CAC), October 22-24, 2021. Beijing, China. IEEE, 2021:3601-3606. [25] GODARDC, MAC A O, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:3828-3838. |