机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 281-303.doi: 10.3901/JME.2023.20.281
彭湃, 耿可可, 王子威, 柳智超, 殷国栋
收稿日期:
2023-06-13
修回日期:
2023-08-30
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
殷国栋(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为先进电动汽车、车辆动力学与控制、智能汽车和车辆主动安全控制。E-mail:ygd@seu.edu.cn
作者简介:
彭湃,男,1993年出生,博士研究生。主要研究方向为智能汽车多模态融合感知。E-mail:pengpai@seu.edu.cn
基金资助:
PENG Pai, GENG Keke, WANG Ziwei, LIU Zhichao, YIN Guodong
Received:
2023-06-13
Revised:
2023-08-30
Online:
2023-10-20
Published:
2023-12-08
摘要: 智能汽车是全球汽车产业的未来发展方向,是推动我国自主汽车产业高质量发展的应有之义。智能汽车依靠人工智能、泛在传感等先进技术的赋能,实现对驾驶人认知感知、决策规划及控制执行的增强或替代。对道路环境的实时、精准和鲁棒的感知是汽车智能化的基石,近十年间智能汽车感知领域的巨大飞跃多是由深度学习技术推动的。针对近年智能汽车环境感知技术的发展现状,首先梳理智能汽车环境感知系统软硬件架构,对感知、计算设备以及算法部署平台进行总体概述;其次,围绕目标检测与语义分割、多目标跟踪、目标意图识别与轨迹预测、环境建图四方面关键任务,总结近年具有里程碑意义的研究方法与技术方案;最后,分析当前智能汽车环境感知技术所面临的问题和挑战,并对未来发展趋势与关键技术进行展望。
中图分类号:
彭湃, 耿可可, 王子威, 柳智超, 殷国栋. 智能汽车环境感知方法综述[J]. 机械工程学报, 2023, 59(20): 281-303.
PENG Pai, GENG Keke, WANG Ziwei, LIU Zhichao, YIN Guodong. Review on Environmental Perception Methods of Autonomous Vehicles[J]. Journal of Mechanical Engineering, 2023, 59(20): 281-303.
[1] 李克强,戴一凡,李升波,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报,2017,8(1):1-14. LI Keqiang,DAI Yifan,LI Shengbo,et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy,2017,8(1):1-14. [2] 陈虹,郭露露,宫洵,等. 智能时代的汽车控制[J]. 自动化学报,2020,46(7):1313-1332. CHEN Hong,GUO Lulu,GONG Xun,et al. Automotive control in intelligent era[J]. Acta Automatica Sinica,2020,46(7):1313-1332. [3] 熊璐,杨兴,卓桂荣,等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报,2020,56(10):127-143. XIONG Lu,YANG Xing,ZHUO Guirong,et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering,2020,56(10):127-143. [4] 彭湃,耿可可,殷国栋,等. 基于传感器融合里程计的相机与激光雷达自动重标定方法[J]. 机械工程学报,2021,57(20):206-214. PENG Pai,GENG Keke,YIN Guodong. Automatic recalibration of camera and lidar using sensor fusion odometry[J]. Journal of Mechanical Engineering,2021,57(20):206-214. [5] 江浩斌,沈峥楠,马世典,等. 基于信息融合的自动泊车系统车位智能识别[J]. 机械工程学报,2017,53(22):125-133. JIANG Haobin,SHEN Zhengnan,MA Shidian,et al. Intelligent identification of automatic parking system based on information fusion[J]. Journal of Mechanical Engineering,2017,53(22):125-133. [6] 姜武华,辛鑫,陈无畏,等. 基于信息融合的自动泊车系统多工况车位识别和决策规划[J]. 机械工程学报,2021,57(6):131-141. JIANG Wuhua,XIN Xin,CHEN Wuwei,et al. Multi-condition parking space recognition based on information fusion and decision planning of automatic parking system[J]. Journal of Mechanical Engineering,2021,57(6):131-141. [7] 王艺,蔡英凤,陈龙,等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报,2019,55(8):136-144. WANG Yi,CAI Yingfeng,CHEN Long,et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control[J]. Journal of Mechanical Engineering,2019,55(8):136-144. [8] 章仁燮,熊璐,余卓平. 智能汽车转向轮转角主动控制[J]. 机械工程学报,2017,53(14):106-113. ZHANG Renxie,XIONG Lu,YU Zhuoping. Active steering angle control for intelligent vehicle[J]. Journal of Mechanical Engineering,2017,53(14):106-113. [9] LI F,SHI W,TU Y,et al. Automated methods for indoor point cloud preprocessing:Coordinate frame reorientation and building exterior removal[J]. Journal of Building Engineering,2023,76:107270. [10] LI X,ZHANG B,SANDER P V,et al. Blind geometric distortion correction on images through deep learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:4855-4864. [11] YAN G,LIU Z,WANG C,et al. Opencalib:A multi-sensor calibration toolbox for autonomous driving[J]. Software Impacts,2022,14:100393. [12] PERŠIĆ J,PETROVIĆ L,MARKOVIĆ I,et al. Online multi-sensor calibration based on moving object tracking[J]. Advanced Robotics,2021,35(3-4):130-140. [13] ERICKSON B J,KORFIATIS P,AKKUS Z,et al. Toolkits and libraries for deep learning[J]. Journal of Digital Imaging,2017,30:400-405. [14] KIM S,WIMMER H,KIM J. Analysis of deep learning libraries:Keras,pytorch,and mxnet[C]//2022 IEEE/ACIS 20th International Conference on Software Engineering Research,Management and Applications (SERA). IEEE,2022,54-62. [15] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(9):1627-1645. [16] VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR,2001,1:511-518. [17] PRASAD D K. Survey of the problem of object detection in real images[J]. International Journal of Image Processing (IJIP),2012,6(6):441-466. [18] VEDALDI A,GULSHAN V,VARMA M,et al. Multiple kernels for object detection[C]//2009 IEEE 12th International Conference on Computer Vision. IEEE,2009:606-613. [19] VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001,1:511-518. [20] LIENHART R ,MAYDT J. An extended set of Haar-like features for rapid object detection[C]//International Conference on Image Processing. IEEE,2002,1:900-903. [21] DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,1:886-893. [22] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(9):1627-1645. [23] FREUND Y,SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. 1996,96:148-156. [24] HEARST M A,DUMAIS S T,OSUNA E,et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications,1998,13(4):18-28. [25] VIOLA P,JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision,2004,57:137-154. [26] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587. [27] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al. Selective search for object recognition[J]. International Journal of Computer Vision,2013,104:154-171. [28] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [29] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015:1440-1448. [30] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [31] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2117-2125. [32] CAI Z,VASCONCELOS N. Cascade r-cnn:Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:6154-6162. [33] TERVEN J,CORDOVA-ESPARZA D. A comprehensive review of yolo:From yolov1 to yolov8 and beyond[J/OL]. ArXiv,[2023-08-07]. https://doi.org/10.48550/arXiv.2304.00501. [34] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788. [35] LIU W,ANGUELOV D,ERHAN D,et al. Ssd:Single shot multibox detector[C]//Computer Vision–ECCV 2016:14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part I 14. Springer International Publishing,2016:21-37. [36] LAW H,TENG Y,RUSSAKOVSKY O,et al. Cornernet-lite:Efficient keypoint based object detection[J/OL]. ArXiv,[2020-09-16]. https://doi.org/10.48550/arXiv.1904.08900. [37] DUAN K,BAI S,XIE L,et al. Centernet:Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:6569-6578. [38] TAN M,PANG R,LE Q V. Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:10781-10790. [39] LI G,JI Z,QU X,et al. Cross-domain object detection for autonomous driving:A stepwise domain adaptative YOLO approach[J]. IEEE Transactions on Intelligent Vehicles,2022,7(3):603-615. [40] XU X,ZHAO J,LI Y,et al. Banet:A balanced atrous net improved from ssd for autonomous driving in smart transportation[J]. IEEE Sensors Journal,2020,21(22):25018-25026. [41] WANG H,XU Y,WANG Z,et al. Centernet-auto:A multi-object visual detection algorithm for autonomous driving scenes based on improved centernet[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2023,7(3):742-752. [42] CHEN L,LIN S,LU X,et al. Deep neural network based vehicle and pedestrian detection for autonomous driving:A survey[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(6):3234-3246. [43] LI B,OUYANG W,SHENG L,et al. Gs3d:An efficient 3d object detection framework for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:1019-1028. [44] CHABOT F,CHAOUCH M,RABARISOA J,et al. Deep manta:A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2040-2049. [45] CHEN X,KUNDU K,ZHANG Z,et al. Monocular 3D object detection for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:2147-2156. [46] MOUSAVIAN A,ANGUELOV D,FLYNN J,et al. 3D bounding box estimation using deep learning and geometry[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:7074-7082. [47] XIANG Y,CHOI W,LIN Y,et al. Data-driven 3D voxel patterns for object category recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:1903-1911. [48] XIANG Y,CHOI W,LIN Y,et al. Subcategory-aware convolutional neural networks for object proposals and detection[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 2017:924-933. [49] KUNDU A,LI Y,REHG J M. 3D-RCNN:Instance-level 3D object reconstruction via render-and-compare[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:3559-3568. [50] CHEN X,KUNDU K,ZHU Y,et al. 3D object proposals using stereo imagery for accurate object class detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(5):1259-1272. [51] GUPTA S,GIRSHICK R,ARBELÁEZ P,et al. Learning rich features from rgb-d images for object detection and segmentation[C]//Proceedings of European Conference on Computer Vision,2014:345-360. [52] QIN Z,WANG J,LU Y. Triangulation learning network:From monocular to stereo 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:7615-7623. [53] LI P,CHEN X,SHEN S. Stereo R-CNN based 3D object detection for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:7644-7652. [54] SIMONY M,MILZY S,AMENDEY K,et al. Complex-yolo:An euler-region-proposal for real-time 3D object detection on point clouds[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops,Munich,Germany,September 8-14,2018,Proceedings,Part I. Springer International Publishing,2019:197-209. [55] YANG B,LUO W,URTASUN R. Pixor:Real-time 3D object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7652-7660. [56] SHANG J,CHEN Y,NIE J. Lasernet:A method of laser stripe center extraction under non-ideal conditions[J]. Applied Optics,2023,62(13):3387-3397. [57] ZHOU Y,TUZEL O. Voxelnet:End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:4490-4499. [58] YAN Y,MAO Y,LI B. Second:Sparsely embedded convolutional detection[J]. Sensors,2018,18(10):3337. [59] HE C,ZENG H,HUANG J,et al. Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2020:11873-11882. [60] LANG A H,VORA S,CAESAR H,et al. Pointpillars:Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:12697-12705. [61] QI C R,SU H,MO K,et al. Pointnet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:652-660. [62] QI C R,YI L,SU H,et al. Pointnet++:Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:5105-5114. [63] SHI S,WANG X,LI H. Pointrcnn:3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:770-779. [64] CHEN X,MA H,WAN J,et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:1907-1915. [65] KU J,MOZIFIAN M,LEE J,et al. Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,2018:1-8. [66] SINDAGI V A,ZHOU Y,TUZEL O. Mvx-net:Multimodal voxelnet for 3D object detection[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE,2019:7276-7282. [67] ZHOU Y,TUZEL O. Voxelnet:End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:4490-4499. [68] QI C R,LIU W,WU C,et al. Frustum pointnets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:918-927. [69] WANG Z,JIA K. Frustum convnet:Sliding frustums to aggregate local point-wise features for amodal 3D object detection[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,2019:1742-1749. [70] KIRILLOV A,HE K,GIRSHICK R,et al. Panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:9404-9413. [71] KIRILLOV A,GIRSHICK R,HE K,et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:6399-6408. [72] PORZI L,BULO S R,COLOVIC A,et al. Seamless scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:8277-8286. [73] WU B,WAN A,YUE X,et al. Squeezeseg:Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2018:1887-1893. [74] MILIOTO A,VIZZO I,BEHLEY J,et al. Rangenet++:Fast and accurate lidar semantic segmentation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS). IEEE,2019:4213-4220. [75] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440. [76] RONNEBERGER O,FISCHER P,BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18. Springer International Publishing,2015:234-241. [77] MILLETARI F,NAVAB N,AHMADI S A. V-net:Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision. 2016:565-571. [78] BADRINARAYANAN V,KENDALL A,CIPOLLA R. Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [79] LIN G,MILAN A,SHEN C,et al. Refinenet:Multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:1925-1934. [80] WU H,ZHANG J,HUANG K,et al. Fastfcn:Rethinking dilated convolution in the backbone for semantic segmentation[J/OL]. ArXiv,[2019-03-28]. https://doi.org/10.48550/arXiv.1903.11816. [81] ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2881-2890. [82] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [83] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[J/OL]. ArXiv,[2016-04-30]. https://doi.org/10.48550/arXiv.1511.07122. [84] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010. [85] ZHENG S,LU J,ZHAO H,et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:6881-6890. [86] YASRAB R. Ecru:An encoder-decoder based convolution neural network (CNN) for road-scene understanding[J]. Journal of Imaging,2018,4(10):116-125. [87] CHEN P R,HANG H M,CHAN S W,et al. Dsnet:An efficient cnn for road scene segmentation[J]. APSIPA Transactions on Signal and Information Processing,2020,9(27):127-137. [88] ZHANG X,CHEN Z,WU Q M,et al. Fast semantic segmentation for scene perception[J]. IEEE Transactions on Industrial Informatics,2019,15(2):1183-1192. [89] PENG Y,HAN W,OU Y. Semantic segmentation model for road scene based on encoder-decoder structure[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,2019:1927-1932. [90] CORDTS M,OMRAN M,RAMOS S,et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:3213-3223. [91] TEICHMANN M,WEBER M,ZOELLNER M,et al. Multinet:Real-time joint semantic reasoning for autonomous driving[C]//2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,2018:1013-1020. [92] GEIGER A,LENZ P,STILLER C,et al. Vision meets robotics:The kitti dataset[J]. The International Journal of Robotics Research,2013,32(11):1231-1237. [93] HE K,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference On Computer Vision. 2017:2961-2969. [94] CAI Z,VASCONCELOS N. Cascade R-CNN:High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,43(5):1483-1498. [95] HUANG Z,HUANG L,GONG Y,et al. Mask scoring R-CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:6409-6418. [96] KIRILLOV A,WU Y,HE K,et al. Pointrend:Image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:9799-9808. [97] BOLYA D,ZHOU C,XIAO F,et al. Yolact:Real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:9157-9166. [98] BOLYA D,ZHOU C,XIAO F,et al. Yolact++ better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(2):1108-1121. [99] CHEN H,SUN K,TIAN Z,et al. Blendmask:Top-down meets bottom-up for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:8573-8581. [100] YING H,HUANG Z,LIU S,et al. Embedmask:Embedding coupling for one-stage instance segmentation[J/OL]. ArXiv,[2019-12-05]. https://doi.org/10.48550/arXiv.1912.01954. [101] TIAN Z,ZHANG B,CHEN H,et al. Instance and panoptic segmentation using conditional convolutions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(1):669-680. [102] RAKAI L,SONG H,SUN S J,et al. Data association in multiple object tracking:A survey of recent techniques[J]. Expert Systems with Applications,2022,192:116300. [103] BASHAR M,ISLAM S,HUSSAIN K K,et al. Multiple object tracking in recent times:A literature review[J/OL]. ArXiv,[2022-09-11]. https://doi.org/10.48550/arXiv.2209.04796. [104] BEWLEY A,GE Z,OTT L,et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE,2016:3464-3468. [105] WOJKE N,BEWLEY A,PAULUS D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE,2017:3645-3649. [106] VOIGTLAENDER P,KRAUSE M,OSEP A,et al. Mots:Multi-object tracking and segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:7942-7951. |
[1] | 林晨, 何智成, 黄怡菲, 林智桂, 付广, 黄晋. 多级参数融合网络的驾驶场景目标检测方法研究[J]. 机械工程学报, 2024, 60(10): 64-75. |
[2] | 李颖, 王荣煊, 万成麟, 王伟达, 杨超, 徐彬. 分体式飞行汽车立体环境感知系统设计及试验研究[J]. 机械工程学报, 2024, 60(10): 102-111. |
[3] | 曾迪, 郑玲, 李以农, 杨显通. 自动驾驶奖励函数贝叶斯逆强化学习方法[J]. 机械工程学报, 2024, 60(10): 245-260. |
[4] | 王永胜, 刘金鑫, 卜德旭, 江发潮, 罗禹贡. 智能汽车显式沟通下的交互式行人穿行行为预测[J]. 机械工程学报, 2023, 59(8): 151-162. |
[5] | 臧勇, 蔡英凤, 孙晓强, 徐兴, 陈龙, 王海. 基于可拓博弈的智能汽车轨迹跟踪协调控制方法研究[J]. 机械工程学报, 2022, 58(8): 181-194. |
[6] | 陶永, 刘海涛, 王田苗, 韩栋明, 赵罡. 我国服务机器人技术研究进展与产业化发展趋势[J]. 机械工程学报, 2022, 58(18): 56-74. |
[7] | 杨俊儒, 褚端峰, 陆丽萍, 王金湘, 吴超仲, 殷国栋. 智能汽车人机共享控制研究综述[J]. 机械工程学报, 2022, 58(18): 31-55. |
[8] | 韩嘉懿, 赵健, 朱冰. 面向智能汽车人机协同转向控制的强化学习变阻抗人机交互方法[J]. 机械工程学报, 2022, 58(18): 141-149. |
[9] | 张利鹏, 苏泰, 严勇. 基于采样区域优化的智能车辆轨迹规划方法[J]. 机械工程学报, 2022, 58(14): 276-287. |
[10] | 梁艺潇, 李以农, KHAJEPOUR Amir, 郑玲. 基于转向与主动横摆力矩协调的四轮驱动智能电动汽车路径跟踪控制[J]. 机械工程学报, 2021, 57(6): 142-155. |
[11] | 张志达, 郑玲, 李以农, 吴行, 余颖弘. 基于鲁棒自适应SCKF的智能汽车目标状态跟踪研究[J]. 机械工程学报, 2021, 57(20): 181-193. |
[12] | 张雷, 王子浩, 孙逢春, 王震坡. 四轮轮毂电机驱动智能电动汽车转向失效容错控制研究[J]. 机械工程学报, 2021, 57(20): 141-152. |
[13] | 王明强, 王震坡, 张雷. 基于碰撞风险评估的智能汽车局部路径规划方法研究[J]. 机械工程学报, 2021, 57(10): 28-41. |
[14] | 谢有浩, 魏振亚, 赵林峰, 王家恩, 陈无畏. 基于μ综合方法的智能车辆人机共驾的鲁棒横向控制[J]. 机械工程学报, 2020, 56(4): 104-114. |
[15] | 李运华, 范茹军, 杨丽曼, 赵斌, 权龙. 智能化挖掘机的研究现状与发展趋势[J]. 机械工程学报, 2020, 56(13): 165-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||