机械工程学报 ›› 2020, Vol. 56 ›› Issue (13): 165-178.doi: 10.3901/JME.2020.13.165
李运华1, 范茹军1, 杨丽曼1, 赵斌2, 权龙2
收稿日期:
2019-06-03
修回日期:
2019-12-03
出版日期:
2020-07-05
发布日期:
2020-08-01
通讯作者:
李运华(通信作者),男,1963年出生,教授,博士研究生导师。主要研究方向为液压传动与控制,车辆与工程机械,网络化运动控制与操纵等。E-mail:yhli@buaa.edu.cn
作者简介:
范茹军,男,1990年出生,博士研究生。主要研究方向为机电液系统控制,工程机械臂轨迹优化。E-mail:rujun_fan@163.com;杨丽曼,女,1975年出生,副教授。主要研究方向为机电系统控制与健康管理。E-mail:ylm@buaa.edu.cn
基金资助:
LI Yunhua1, FAN Rujun1, YANG Liman1, ZHAO Bin2, QUAN Long2
Received:
2019-06-03
Revised:
2019-12-03
Online:
2020-07-05
Published:
2020-08-01
摘要: 智能化挖掘机是传统挖掘机与人工智能、自动控制和信息物理网络等技术深度融合的产物。相对于传统挖掘机,其拥有更高的功率利用率及作业精度,集远程作业、环境感知、智能诊断为一体,在抗震救灾、太空及水下作业等领域都有广阔的应用前景。然而挖掘机液压系统具有强非线性、流量耦合、时变等特点,而工作装置又存在动力学耦合和负载不确定性,结构简单、参数依赖度低、高精度的智能控制算法将提高挖掘机自主作业精度;由于视觉传感器易受光照、气象条件影响,研究多传感器融合及其智能算法将提升挖掘机的环境感知能力;液压系统故障模式隐藏性高,受机载设备硬件限制,探索非冗余小规模深度学习网络和压缩感知技术是实现在线智能故障诊断的关键。从轨迹控制、环境感知、远程控制与智能故障诊断四个方面,综述了挖掘机智能化的国内外研究现状;指出了智能化挖掘机发展存在的问题与发展趋势;最后根据现有研究成果得出了五点结论。
中图分类号:
李运华, 范茹军, 杨丽曼, 赵斌, 权龙. 智能化挖掘机的研究现状与发展趋势[J]. 机械工程学报, 2020, 56(13): 165-178.
LI Yunhua, FAN Rujun, YANG Liman, ZHAO Bin, QUAN Long. Research Status and Development Trend of Intelligent Excavators[J]. Journal of Mechanical Engineering, 2020, 56(13): 165-178.
[1] 葛磊,董致新,李运华,等. 系列化液压挖掘机数字样机研究[J]. 机械工程学报,2019,55(14):186-196. GE Lei,DONG Zhixin,LI Yunhua,et al. Research on digital prototypes of serial hydraulic excavators[J]. Journal of Mechanical Engineering,2019,55(14):186-196. [2] YUSOF A A,SAADUN M N A,SULAIMAN H,et al. The development of tele-operated electro-hydraulic actuator (T-EHA) for mini excavator tele-operation[M]. New York:IEEE,2016. [3] LEE S U,CHANG P H. Control of a heavy-duty robotic excavator using time delay control with integral sliding surface[J]. Control Engineering Practice,2002,10(7):697-711. [4] PAPADOPOULOS E,MU B,FRENETTE R. On modeling,identification,and control of a heavy-duty electrohydraulic harvester manipulator[J]. IEEE-ASME Transactions on Mechatronics,2003,8(2):178-187. [5] 李泽鹏,权龙,葛磊,等. 液电混合驱动液压挖掘机动臂特性及能效研究[J]. 机械工程学报,2018,54(20):213-219. LI Zepeng,QUAN Long,GE Lei,et al. Research on characteristics and energy efficiency of hydraulic-electric combined driving hydraulic excavator boom[J]. Journal of Mechanical Engineering,2018,54(20):213-219. [6] GE L,QUAN L,LI Y W,et al. A novel hydraulic excavator boom driving system with high efficiency and potential energy regeneration capability[J]. Energy Conver-sion and Management,2018,166:308-317. [7] LIN T,WANG Q. Hydraulic accumulator-motor-generator energy regeneration system for a hybrid hydraulic excavator[J]. Chinese Journal of Mechanical Engineering,2012,25(6):1121-1129. [8] 杨华勇. 工程机械智能化进展与发展趋势[J]. 建设机械技术与管理,2017,30(12):19-21. YANG Huayong. Progress and trend of construction ma-chinery intelligence[J]. Construction Machinery Technology and Management,2017,30(12):19-21. [9] CANNON H N. Extended earthmoving with an autono-mous excavator[D]. Pittsburgh:Carnegie Mellon University,1999. [10] GU J,TAYLOR C J,SEWARD D W. Proportional-Integral-Plus control strategy of an intelligent excavator[J]. Computer-Aided Civil and Infrastructure Engineering,2004,19(1):16-27. [11] 赵鑫. 智能挖掘机轨迹控制研究[D]. 长沙:中南大学,2012. ZHAO Xin. Trajectory control of the new intelligent excavator[D]. Changsha:Central South University,2012. [12] 李勇. 自动作业液压挖掘机的铲斗轨迹控制和回转力矩控制研究[D]. 杭州:浙江大学,2019. LI Yong. Study on bucket trajectory and swing torque control for the autonomous hydraulic excavator[D]. Hangzhou:Zhejiang University,2019. [13] TIAN T,SUN S,LI N. Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises[J]. Information Fusion,2016,27:126-137. [14] RUSSELL S J,NORVIG P. Artificial intelligence:A modern approach[M]. Malaysia:Pearson Education Limited,2016. [15] SEO Y,SHIN K S. Hierarchical convolutional neural networks for fashion image classification[J]. Expert Systems with Applications,2019,116:328-339. [16] DUA M,AGGARWAL R K,BISWAS M. Discri-minatively trained continuous Hindi speech recognition system using interpolated recurrent neural network language modeling[J]. Neural Computing and Applications,2019,31(10):6747-6755. [17] LI B T,PI D C. Learning deep neural networks for node classification[J]. Expert Systems with Applications,2019,137:324-334. [18] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [19] KIM K W,KIM H S,CHOI Y K,et al. Optimization of cubic polynomial joint trajectories and sliding mode controllers for robots using evolution strategy[C]//Proceedings of the 23rd International Conference on Industrial Electronics,Control,and Instrumentation. Piscataway:IEEE,1997,1444-1447. [20] ANGELES J,ALIVIZATOS A,ZSOMBOR-MURRAY P J. The synthesis of smooth trajectories for pick- and-place operations[J]. IEEE Transactions on Systems,Man,and Cybernetics,1988,18(1):173-178. [21] SINGH S,CANNON H. Multi-resolution planning for earthmoving[C]//1998 IEEE International Conference on Robotics and Automation. Piscataway:IEEE,1998,121-126. [22] 朱世强,刘松国,王宣银,等. 机械手时间最优脉动连续轨迹规划算法[J]. 机械工程学报,2010,46(3):47-52. ZHU Shiqiang,LIU Songguo,WANG Xuanyin,et al. Time-optimal and jerk-continuous trajectory planning algorithm for manipulators[J]. Journal of Mechanical Engineering,2010,46(3):47-52. [23] ZHANG B,WANG S,LIU Y,et al. Research on trajectory planning and autodig of hydraulic excavator[J]. Mathematical Problems in Engineering,2017,2017:1-10. [24] 翁文文,殷晨波,冯浩,等. 挖掘机器人自主挖掘轨迹规划方法[J]. 机械设计与研究,2018,34(2):5-9. WENG Wenwen,YIN Chenbo,FENG Hao,et al. Autonomous mining trajectory planning method for mining robot[J]. Machine Design and Research,2018,34(2):5-9. [25] NAGY A,VAJK I. Nonconvex time-optimal trajectory planning for robot manipulators[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,2019,141(11):111007. [26] 孙志毅,张韵悦,李虹,等. 挖掘机的最优时间轨迹规划[J]. 机械工程学报,2019,55(5):166-174. SUN Zhiyi,ZHANG Yunyue,LI Hong,et al. Time optimal trajectory planning of excavator[J]. Journal of Mechanical Engineering,2019,55(5):166-174. [27] YOO S,PARK C,YOU S,et al. A dynamics-based optimal trajectory generation for controlling an automated excavator[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2010,224(10):2109-2119. [28] STAVROPOULOU M,XIROUDAKIS G,EXADAKTYLOS G. Analytical model for estimation of digging forces and specific energy of cable shovel[J]. Coupled Systems Mechanics,2013,2(1):23-51. [29] WANG X B,SUN W,LI E Y,et al. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning[J]. Structural and Multidisciplinary Optimization,2018,58(5):2219-2237. [30] KIM Y B,HA J,KANG H,et al. Dynamically optimal trajectories for earthmoving excavators[J]. Automation in Construction,2013,35:568-578. [31] ZOU Z,CHEN J,PANG X. Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil-bucket interaction[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2019,233(3):598-616. [32] GAO Y J,JIN Y C,ZHANG Q. Motion planning based coordinated control for hydraulic excavators[J]. Chinese Journal of Mechanical Engineering,2009,22(1):97-101. [33] ZWEIRI Y H,SENEVIRATNE L D,ALTHOEFER K. Modelling and control of an unmanned excavator vehicle[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2003,217(I4):259-274. [34] FENG H,YIN C B,WENG W W,et al. Robotic excavator trajectory control using an improved GA based PID controller[J]. Mechanical Systems and Signal Processing,2018,105:153-168. [35] HA Q P,NGUYEN Q H,RYE D C,et al. Fuzzy sliding-mode controllers with applications[J]. IEEE Transactions on Industrial Electronics,2001,48(1):38-46. [36] 张金萍,刘阔,林剑峰,等. 挖掘机的4自由度自适应模糊滑模控制[J]. 机械工程学报,2010,46(21):87-92. ZHANG,Jinping,LIU Kuo,LIN Jianfeng,et al. 4-DOF adaptive fuzzy sliding mode control of excavator[J]. Journal of Mechanical Engineering,2010,46(21):87-92. [37] BU F,YAO B. Observer based coordinated adaptive robust control of robot manipulators driven by single-rod hydraulic actuators[C]//Proceedings of the IEEE Interna-tional Conference on Robotics and Automation. Piscataway:IEEE,2000:3034-3039. [38] HE Q H,ZHANG D Q,HAO P,et al. Modeling and control of hydraulic excavator's arm[J]. Journal of Central South University,2006,13(4):422-427. [39] CHANG P H,LEE S J. A straight-line motion tracking control of hydraulic excavator system[J]. Mechatronics,2002,12(1):119-138. [40] KIM J,JIN M,CHOI W,et al. Discrete time delay control for hydraulic excavator motion control with terminal sliding mode control[J]. Mechatronics,2019,60:15-25. [41] PARK J,CHO D,KIM S,et al. Utilizing online learning based on echo-state networks for the control of a hydraulic excavator[J]. Mechatronics,2014,24(8):986-1000. [42] LE H D,AHN K K,KHA N B,et al. Trajectory control of electro-hydraulic excavator using fuzzy self tuning algorithm with neural network[J]. Journal of Mechanical Science and Technology,2009,23(1):149-160. [43] CAI G,TONG Z,XING Z. Modelling of electro-hydraulic system using RBF neural networks and genetic algorithm[J]. ACM Transactions on Graphics,2010,29(4):1-12. [44] KIM S,PARK J,KANG S,et al. A robust control approach for hydraulic excavators using μ-synthesis[J]. International Journal of Control,Automation and Systems,2018,16(4):1615-1628. [45] RAIBERT M H,CRAIG J J. Hybrid position/force control of manipuIators[J]. Journal of Dynamic Systems,Measurement and Control,1981,103(2):126-133. [46] VÄHÄ P K,SKIBNIEWSKI M J. Cognitive force control of excavators[J]. Journal of Aerospace Engineering,1993,6(2):159-166. [47] NGUYEN Q H,HA Q P,RYE D C,et al. Force/position tracking for electrohydraulic systems of a robotic excavator[C]//Proceedings of the 39th IEEE Conference on Decision and Control. Piscataway:IEEE Computer Society,2000:5224-5229. [48] PARK H,LEE S,CHU B,et al. Obstacle avoidance for robotic excavators using a recurrent neural network[C]//2008 International Conference on Smart Manufacturing Application. Piscataway:IEEE,2008:583-588. [49] KIM S K,SEO J,RUSSELL J S. Intelligent navigation strategies for an automated earthwork system[J]. Automation in Construction,2012,21:132-147. [50] 朱建新,罗刚,汪志杰,等. 基于激光雷达的挖掘机器人回转避障研究[J]. 传感器与微系统,2017,36(9):41-44. ZHU Jianxin,LUO Gang,WANG Zhijie,et al. Study on obstacle avoidance of excavator robot rotating based on laser radar[J]. Transducer and Microsystem Technologies,2017,36(9):41-44. [51] QUANG H A,SANTOS,MIGUEL,et al. Robotic excavation in construction automation[J]. IEEE Robotics and Automation Magazine,2002,9(1):20-28. [52] SEO J,LEE S,KIM J,et al. Task planner design for an automated excavation system[J]. Automation in Construction,2011,20(7):954-966. [53] YAMAMOTO H,MOTEKI M,SHAO H,et al. Development of the autonomous hydraulic excavator prototype using 3D information for motion planning and control[J]. Transactions of the Society of Instrument and Control Engineers,2012,48(8):488-497. [54] GU J,MA X D,NI J F,et al. Linear and nonlinear control of a robotic excavator[J]. Journal of Central South University,2012,19(7):1823-1831. [55] 牛大伟. 基于MEMS传感器的挖掘机姿态检测系统的研究[D]. 泉州:华侨大学,2015. NIU Dawei. The research of the excavator attitude detection system based on MEMS sensor[D]. Quanzhou:Huaqiao University,2015. [56] YUAN C X,LI S,CAI H B. Vision-based excavator detection and tracking using hybrid kinematic shapes and key nodes[J]. Journal of Computing in Civil Engineering,2017,31(1):04016038. [57] XU J,YOON H S. Vision-based estimation of excavator manipulator pose for automated grading control[J]. Automation in Construction,2019,98:122-131. [58] LIANG C J,LUNDEEN K M,MCGEE W,et al. A vision-based marker-less pose estimation system for articulated construction robots[J]. Automation in Construction,2019,104:80-94. [59] 王海波,邹海龙,张如照. 基于视觉测量的挖掘机工作装置姿态测量系统[J]. 农业机械学报,2015,46(4):302-308. WANG Haibo,ZOU Hailong,ZHANG Ruzhao. Attitude measurement system for excavator's manipulator based on vision measurement[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):302-308. [60] 朱建新,沈东羽,吴钪. 基于激光点云的智能挖掘机目标识别[J]. 计算机工程,2017,43(1):297-302. ZHU Jianxin,SHEN Dongyu,WU Kang. Target recognition for intelligent excavator based on laser point cloud[J]. Computer Engineering,2017,43(1):297-302. [61] YOO H S,KIM Y S. Development of a 3D local terrain modeling system of intelligent excavation robot[J]. KSCE Journal of Civil Engineering,2016,21(3):565-578. [62] CHAE M,KIM J,JANG J,et al. 3D imaging system for the intelligent excavation system(IES)[C]//25th International Symposium on Automation and Robotics in Construction. Vilnius:Vilnius Gediminas Technical Univ Press,2008,286-291. [63] CHAE M J,LEE G W,KIM J Y,et al. A 3D surface modeling system for intelligent excavation system[J]. Automation in Construction,2011,20(7):808-817. [64] KOMATSU. 现况高精度测量[EB/OL].[2019-07-08]. http://smartconstruction.komatsu/introduction/index.html. KOMATSU. High-precision measurement of site conditions[EB/OL].[2019-07-08]. http://smartConstruction.komatsu/introduction/index.html. [65] 三一集团. 三一、华为巨头联手,全球首台5G遥控挖掘机投入实用[EB/OL].[2019-07-05]. https://www.sanygroup.com/xwzx/6993.html. SANY GROUP. Sany cooperates with Huawei to put the world's first 5G remote control excavator intopractice[EB/OL].[2019-07-05]. https://www.sanygroup.com/xwzx/6993.html. [66] LE Q H,LEE J W,YANG S Y. Remote control of excavator using head tracking and flexible monitoring method[J]. Automation in Construction,2017,81:99-111. [67] KIM D,KIM J,LEE K,et al. Excavator tele-operation system using a human arm[J]. Automation in Construction,2009,18(2):173-182. [68] KIM D,OH K W,LEE C S,et al. Novel design of haptic devices for bilateral teleoperated excavators using the wave-variable method[J]. International Journal of Precision Engineering and Manufacturing,2013,14(2):223-230. [69] NG F,HARDING J A,GLASS J. Improving hydraulic excavator performance through in line hydraulic oilconta-mination monitoring[J]. Mechanical Systems and Signal Processing,2017,83:176-193. [70] LEE Y B. A study of the life test of hydraulic pump driving gear box for the large excavator[J]. Journal of the Korean Society of Marine Engineering,2015,39(3):211-216. [71] 冯萧. 基于WiFi和虚拟仪器的工程机械参数监测及故障诊断系统研究与开发[D]. 石家庄:石家庄铁道大学,2018. FENG Xiao. Study of system of engineering machinery's parameters on-line monitoring and fault-diagnosing based on technology of WIFI and virtual instruments[D]. Shijiazhuang:Shijiazhuang Tiedao University,2018. [72] LI H,TIAN Z,YU H,et al. Fault prognosis of hydraulic pump based on bispectrum entropy and deep belief network[J]. Measurement Science Review,2019,19(5):195-203. [73] HE X Y,HE Q H,XIE X H,et al. Fault diagnosis of excavator hydraulic system based on partial least squares regression[J]. Journal of Central South University,2007,38(6):1152-1156. [74] HE X,HE Q. Application of PCA method and FCM clustering to the fault diagnosis of excavator's hydraulic system[C]//2007 IEEE International Conference on Automation and Lofistics. Piscataway:IEEE,2007,1635-1639. [75] HE Q H,HE X Y,ZHU J X. Fault detection of excavator's hydraulic system based on dynamic principal component analysis[J]. Journal of Central South University,2008,15(5):700-705. [76] SHAO H,JIANG H,ZHAO H,et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems,2016,119:200-220. [77] GUO X,CHEN L,SHEN C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement,2016,93:490-502. [78] JING L,WANG T,ZHAO M,et al. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox[J]. Sensors,2017,17(2):414. |
[1] | 狄子钧, 袁东风, 李东阳, 梁道君, 周晓天, 信苗苗, 曹凤, 雷腾飞. 基于多尺度-高效通道注意力网络的刀具故障诊断方法[J]. 机械工程学报, 2024, 60(6): 82-90. |
[2] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[3] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[4] | 丁孺琦, 熊文杰, 程敏, 徐兵. 智能化阀口独立电液控制系统安全性能评估[J]. 机械工程学报, 2024, 60(4): 101-112. |
[5] | 王志颖, 李天福, 许文纲, 孙闯, 张军辉, 徐兵, 严如强. 降噪混合注意力变分自编码器及其在轴向柱塞泵故障诊断中的应用[J]. 机械工程学报, 2024, 60(4): 167-177. |
[6] | 邵海东, 林健, 闵志闪, 明宇航. 分布外样本干扰下基于改进半监督原型网络的齿轮箱跨域故障诊断[J]. 机械工程学报, 2024, 60(4): 212-221. |
[7] | 潘海洋, 徐海锋, 郑近德, 童靳于, 张飞斌. 基于双加权不平衡矩阵分类器的机械故障诊断方法[J]. 机械工程学报, 2024, 60(3): 170-180. |
[8] | 赵轲, 叶敏, 王瑞欣, 陆海, 刘孟孟, 邵海东. 基于模糊域自适应的源自由域旋转机械故障诊断方法[J]. 机械工程学报, 2024, 60(18): 43-52. |
[9] | 李志鹏, 马天雨, 刘金平, 向青松, 唐俊杰. 基于非对称性对抗训练的多源域自适应智能故障诊断方法[J]. 机械工程学报, 2024, 60(18): 76-88. |
[10] | 汪煜坤, 易彩, 汪浩, 周秋阳, 冉乐, 王靖元. PSD引导的自适应频带划分方法及其在轴承故障诊断中的应用[J]. 机械工程学报, 2024, 60(17): 179-193. |
[11] | 刘一龙, 李心远, 陈银萍, 成玮, 陈雪峰. 基于峭度曲面极大值的电机轴承保持架故障诊断方法[J]. 机械工程学报, 2024, 60(15): 89-99. |
[12] | 于小洛, 杨阳, 杜明刚, 何清波, 彭志科. 机械传动系统含偏差频率分量协同检测与分解方法[J]. 机械工程学报, 2024, 60(15): 100-112. |
[13] | 黄包裕, 张永祥. 一种基于三步法的轴承故障诊断方法[J]. 机械工程学报, 2024, 60(14): 51-68. |
[14] | 陈钱, 陈康康, 董兴建, 皇甫一樊, 彭志科, 孟光. 一种面向机械设备故障诊断的可解释卷积神经网络[J]. 机械工程学报, 2024, 60(12): 65-76. |
[15] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||