[1] NOCK K T,GATES K L,AARON K M. Gossamer orbit lowering device for safe and efficient de-orbit[C]//American Institute of Aeronautics and Astronautics. AIAA/AAS Astrodynamics Specialist Conference,August 2-5,2010,Toronto,Ontario Canada. Washington:AIAA,2010:7824. [2] MINGHE S,GUO J,GILL E. Review and comparison of active space debris capturing and removal[J]. Progress in Aerospace Sciences,2016,80:18-32. [3] 陆震. 小卫星和微纳卫星应用现状与挑战[J]. 兵器装备工程学报,2018(6):1-7. LU Zhen. Status and trends of the small satellite and micro-nano satellites[J]. Journal of Weaponry and Equipment Engineering,2018(6):1-7. [4] 何慧东,付郁. 2017年全球小卫星发展回顾[J]. 国际太空,2018(2):51-56. HE Huidong,FU Yu. 2017 year in review:World small satellites[J]. Space International,2018(2):51-56. [5] 何异舟. 小卫星技术与产业发展研究[J]. 电信网技术,2017(10):29-33. HE Yizhou. Study on technology and industrialization of small satellites[J]. Telecommunications Network Technology,2017(10):29-33. [6] ADELI S N. Attitude control and deployment of nano-solar sail spacecraft[D]. Guildford:University of Surrey,2011. [7] JOHNSON L,WHORTON M,HEATON A. NanoSail-D:A solar sail demonstration mission[C]//International Academy of Astronautics,Sixth IAA Symposium on Realistic Near-Term Advanced Scientific Space Missions,July 6-9,2009,Aosta,Italy. Paris:IAA,2009:505. [8] ALHORN D C,CASAS J P. NanoSail-D:The small satellite that could[C]//National Aeronautics and Space Administration,25th Annual AIAA/USU Conference on Small Satellites,Aug 82011,AMES Research Center,Huntsville:NASA,2011:27. [9] NEHRENZ M T. Initial design and simulation of the attitude determination and control system for LightSail-1[R]. San Luis Obispo:CPSA,2010 [10] BIDDY C,SVITEK T. LightSail-1 solar sail design and qualification[C]//Jet Propulsion Lab. Proceedings of the 41st Aerospace Mechanisms Symposium,May 16-18,2012,Pasadena,Ca. Pasadena:JPL,2012:1319. [11] HILLEBRANDT M,MEYER S,ZANDER M. Deployment testing of the de-orbit sail flight hardware[C]//American Institute of Aeronautics and Astronautics,2nd AIAA Spacecraft Structures Conference,January 5-9,2015,Kissimmee,Florida. Washington:AIAA,2015:0434. [12] STOHLMAN O R,LAPPAS V. Deorbitsail:A deployable sail for de-orbiting[C]//American Institute of Aeronautics and Astronautics,54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,April 8-11,2013,Boston,Massachusetts. Washington:AIAA,2013:1806. [13] STOHLMAN O R,FERNANDEZY J M. Testing of the deorbitsail drag sail subsystem[C]//American Institute of Aeronautics and Astronautics,54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,April 8-11,2013,Boston,Massachusetts. Washington:AIAA,2013:1807. [14] STOHLMAN O R,SCHENK M,LAPPAS V. Development of the Deorbitsail flight model[C]//American Institute of Aeronautics and Astronautics,Spacecraft Structures Conference,January 13-17,2014,National Harbor,Maryland. Washington:AIAA,2014:1509. [15] MIYAZAKI Y,KINOSHITA N. A deployable membrane structure for de-orbiting a nano satellite[C]//International Academy of Astronautics. 58th International Astronautical Congress,September 24-28,2007,Hyderabad,India. Paris:IAA,2007:4508. [16] MAESSEN D C,BREUKELEN E D. Development of a generic inflatable de-orbit device for CUBESATS[C]//International Academy of Astronautics. 58th International Astronau-tical Congress,September 24-28,2007,Hyderabad,India. Paris:IAA,2007:6306. [17] RYSZAWA E,ROSZKOWSKI D. PW-Sat2 preliminary design review[R]. Warsaw:WUT,2016. [18] 谭惠丰,侯一心. 高性能主动离轨立方体卫星[R]. 哈尔滨:哈尔滨工业大学,2018. TAN Huifeng,HOU Yixin. High performance de-orbit cubesat[R]. Harbin:Harbin Institude of Technology,2018. [19] 曾玉堂. 立方体卫星制动帆离轨装置的设计与研究[D]. 南京:南京理工大学,2017. ZENG Yutang. Design of drag sail for de-orbit of cubesat[D]. Nanjing:Nanjing University of Science and Technology,2017 [20] FITIÉ A,BREUKELEN E,ROTTEVEEL J. Inflatable aerobrake for end-of-life de-orbit of nanosatellites performance evaluation and collision risk assessment[C]//Interna-tional Astronautical Federation,59th International Astronautical Congress,September 29-October 3,2008,Glasgow,United kingdom. Paris:IAF,2008:2398-3406. [21] TSUDA Y,SAIKI T,FUNASE R. Generalized attitude model for spinning solar sail spacecraft[J]. Journal of Guidance,Control,and Dynamics,2013,36(4):1. [22] SECHELI G,VIQUERAT A,AGLIETTI G. Mechanical development of a novel inflatable and rigidizable structure[C]//American Institute of Aeronautics and Astronautics,3rd AIAA Spacecraft Structures Conference,January 4-8,2016,San Diego,California,USA. Washington:AIAA,2016:1220. [23] SATOU Y,MORI O,OKUIZUMI N. Deformation properties of solar sail IKAROS membrane with nonlinear finite element analyses[C]//American Institute of Aeron-autics and Astronautics,2nd AIAA Spacecraft Structures Conference,January 5-9,2015,Kissimmee,Florida. Washington:AIAA,2015:0436. [24] ONO G,MATSUMOTO J,MIMASU Y. Development of mission devices and sub-systems on sail for world's first solar power sail IKAROS[J]. Japanese Rocket Society,2012,27(1):38-53. [25] 沈自才,张帆,赵春晴. IKAROS太阳帆的关键技术分析与启示[J]. 航天器工程,2012(4):101-107. SHEN Zicai,ZHANG Fan,ZHAO Chunqing. Key technology analysis and enlightenment of IKAROS solar sail[J]. Spacecraft Engineering,2012(4):101-107. [26] 陈罗婧,王沫,吕秋杰. 国外太阳帆薄膜材料选择及帆面展开方式研究进展[J]. 空间电子技术,2015(3):18-26. CHEN Luojing,WANG Mo,LÜ Qiujie. Recent progress on solar sail membrane materials and deployment technology[J]. Space Electronic Technology,2015(3):18-26. [27] ARYA M,PELLEGRINO S. Deployment mechanics of highly compacted thin membrane structure[C]//Ameri-can Institute of Aeronautics and Astronautics,Spacecraft Structures Conference,January 13-17,2014,National Harbor,Maryland. Washington:AIAA,2014:1038. [28] SHIRASAWA Y,MORI O,SAWADA H. A study on membrane dynamics and deformation of solar power sail demenstrator IKAROS[C]//American Institute of Aeronautics and Astronautics. 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,April 23-26,2012,Honolulu,Hawaii. Washington:AIAA,2012:1747. [29] TSUDA Y,MORI O,FUNASE R. Achievement of IKAROS-Japanese deep space solar sail demonstration mission[J]. Acta Astronautica,2013,82:183-188. [30] SAWADA H,SHIRASAWA Y,MORI O. On-orbit result and analysis of sail deployment of world's first solar power sail IKAROS[J]. Japanese Rocket Society,2012,27(1):54-68. [31] SHIRASAWA Y,MORI O,MIYAZAKI Y. Analysis of membrane dynamics using multi-particle model for solar sail demonstrator IKAROS[C]//American Institute of Aeronautics and Astronautics. 52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,April 4-7,2011,Denver,Colorado. Washington:AIAA,2011:1890. [32] TORISAKA A,SATOH Y,AKITA T. Membrane space structure with sterical support of booms and cables[C]//American Institute of Aeronautics and Astronautics,3rd AIAA Spacecraft Structures Conference,January 4-8,2016,San Diego,California,USA. Washington:AIAA,2016:1217. [33] ARYA M,LEE N,PELLEGRINO S. Wrapping thick membranes with slipping folds[C]//American Institute of Aeronautics and Astronautics,2nd AIAA Spacecraft Structures Conference,January 5-9,2015,Kissimmee,Florida. Washington:AIAA,2015:0682. [34] BOUSQUET P,DUPUY C,BONNEFOND T. De-orbiting microscope spacecraft by drag enhancement[C]//International Academy of Astronautics. 57th Interna-tional Astronautical Congress,October 2-6,2006,Valencia,Spain. Paris:IAA,2006:6405. [35] THOMAS G M. Prototype development and dynamic charac-terization of deployable cubesat booms[C]//American Institute of Aeronautics and Astronautics. 51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,April 12-15,2010,Orlando,FL,United States,Washington:AIAA,2010:2907. [36] ROYBAL F A,BANIK J A,MURPHEY T W. Develop-ment of an elastically deployable room for tensioned planar structures[C]//American Institute of Aeronautics and Astronautics,48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,April 23-26,2007,Honolulu,Hawaii. Washington:AIAA,2007:1838. [37] SOBEY A R. Design and development of NEA scout solar sail deployer mechanism[C]//National Aeronautics and Space Administration,43rd Aerospace Mechanisms Symposium,May 4-6,2016,AMES Research Center. Huntsville:NASA,2016:14. |