机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 261-280.doi: 10.3901/JME.2023.20.261
张雷1,2, 徐同良1,2, 李嗣阳1,2, 程树辉1,2, 丁晓林1,2, 王震坡1,2, 孙逢春1,2
收稿日期:
2023-08-16
修回日期:
2023-09-20
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
丁晓林(通信作者),男,1993年出生,博士。主要研究方向为四轮轮毂电机驱动电动汽车动力学理论与控制。E-mail:xld_vehicle@163.com
作者简介:
张雷,男,1987年出生,博士,特别研究员,博士研究生导师。主要研究方向为智能网联新能源汽车安全控制理论与技术。E-mail:lei_zhang@bit.edu.cn;徐同良,男,1996年出生,博士研究生。主要研究方向为分布式驱动电动汽车动力学控制。E-mail:tongliangxu@bit.edu.cn;李嗣阳,男,1999年出生,博士研究生。主要研究方向为分布式驱动电动汽车动力学控制。E-mail:li_si_yang@126.com;程树辉,男,2000年出生,博士研究生。主要研究方向为智能车辆决策与规划控制。E-mail:chengshuhui@bit.edu.cn;王震坡,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车动力学理论与控制以及车用锂离子动力电池成组理论与技术。E-mail:wangzhenpo@bit.edu.cn;孙逢春,男,1958年出生,教授,博士研究生导师,中国工程院院士。主要研究方向为电动车辆总体理论与现代设计方法。E-mail:sunfch@bit.edu.cn
基金资助:
ZHANG Lei1,2, XU Tongliang1,2, LI Siyang1,2, CHENG Shuhui1,2, DING Xiaolin1,2, WANG Zhenpo1,2, SUN Fengchun1,2
Received:
2023-08-16
Revised:
2023-09-20
Online:
2023-10-20
Published:
2023-12-08
摘要: 全线控分布式驱动电动汽车底盘协同控制能够有效提高车辆的安全性与乘坐舒适性。以整车安全性与乘坐舒适性为目标,围绕车辆操纵稳定性控制、底盘容错控制、车身姿态控制与车辆平顺性控制四个方面,全面综述全线控分布式驱动电动汽车底盘协同控制关键技术与研究进展。针对操纵稳定性,介绍了驱动防滑与制动防抱死等车辆纵向稳定性控制方法,系统对比分析了单线控子系统和多线控子系统在车辆横摆与侧倾稳定性控制上的优缺点;概述分布式电驱动系统和线控转向系统失效时的底盘容错控制方法,详细讨论利用底盘协同控制降低线控子系统失效影响的可行性及主要控制方法;总结利用单/多线控子系统进行车身俯仰姿态与平顺性控制的方法,指出应兼顾车身姿态与平顺性控制,以提高车辆乘坐舒适性控制方法在复杂行驶工况下的有效性;最后,展望全线控分布式驱动电动汽车底盘协同控制技术发展趋势。
中图分类号:
张雷, 徐同良, 李嗣阳, 程树辉, 丁晓林, 王震坡, 孙逢春. 全线控分布式驱动电动汽车底盘协同控制研究综述[J]. 机械工程学报, 2023, 59(20): 261-280.
ZHANG Lei, XU Tongliang, LI Siyang, CHENG Shuhui, DING Xiaolin, WANG Zhenpo, SUN Fengchun. Overview on Chassis Coordinated Control for Full X-by-wire Distributed Drive Electric Vehicles[J]. Journal of Mechanical Engineering, 2023, 59(20): 261-280.
[1] LEE H. Reliability indexed sensor fusion and its application to vehicle velocity estimation[J]. Journal of Dynamic Systems,Measurement,and Control,2006,128(2):236-243. [2] 赵治国,杨杰,吴枭威. 四驱混合动力轿车分布式卡尔曼车速估计[J]. 机械工程学报,2015,51(16):50-56. ZHAO Zhiguo,YANG Jie,WU Xiaowei. Vehicle speed estimation based on distributed Kalman filter for four wheel drive hybrid electric car[J]. Journal of Mechanical Engineering,2015,51(16):50-56. [3] ZHAO Z,CHEN H,YANG J,et al. Estimation of the vehicle speed in the driving mode for a hybrid electric car based on an unscented Kalman filter[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2015,229(4):437-456. [4] 赵林辉,刘志远,陈虹. 一种车辆状态滑模观测器的设计方法[J]. 电机与控制学报,2009,13(4):565-570. ZHAO Linhui,LIU Zhiyuan,CHEN Hong. Design method of sliding model observer for vehicle state[J]. Electric Machines and Control,2009,13(4):565-570. [5] DING X,WANG Z,ZHANG L,et al. Longitudinal vehicle speed estimation for four-wheel-independently- actuated electric vehicles based on multi-sensor fusion[J]. IEEE Transactions on Vehicular Technology,2020,69(11):12797-12806. [6] 袁朝春,张龙飞,陈龙. 路面附着系数识别方法发展现状综述及展望[J]. 机械制造与自动化,2018,47(2):1-4,7. YUAN Chaochun,ZHANG Longfei,CHEN Long. Summary and prospect of development of road coefficient identification methods[J]. Machine Building & Automation,2018,47(2):1-4,7. [7] LENG B,JIN D,XIONG L,et al. Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion[J]. Mechanical Systems and Signal Processing,2021,150:1-15. [8] 张雷,关可人,丁晓林,等. 基于图像识别与动力学融合的路面附着系数估计方法[J]. 汽车工程,2023,45(7):1222-1234,1262. ZHANG Lei,GUAN Keren,DING Xiaolin. Tire-road friction estimation method based on image recognition and dynamics fusion[J]. Automotive Engineering,2023,45(7):1222-1234,1262. [9] 余卓平,曾德全,熊璐,等. 基于激光雷达的无人车路面附着系数估计[J]. 华中科技大学学报(自然科学版),2019,47(7):124-127. YU Zhuoping,ZENG Dequan,XIONG Lu,et al. Road adhesion coefficient estimation for unmanned vehicle based on lidar[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2019,47(7):124-127. [10] TUONONEN A. On-board estimation of dynamic tyre forces from optically measured tyre carcass deflections[J]. International Journal of Heavy Vehicle Systems,2009,16(3):362-378. [11] ZHANG L,GUO P,WANG Z,et al. An enabling tire-road friction estimation method for four-in-wheel-motor-drive electric vehicles[J]. IEEE Transactions on Transportation Electrification,2023,9(3):3697-3710. [12] 赵治国,顾君,余卓平. 四轮驱动混合动力轿车驱动防滑控制研究[J]. 机械工程学报,2011,47(14):83-98. ZHAO Zhiguo,GU Jun,YU Zhuoping. Study of acceleration slip regulation strategy for four wheel drive hybrid electric car[J]. Journal of Mechanical Engineering,2011,47(14):83-98. [13] 丁惜瀛,李琳,于华,等. 电动汽车DYC/ASR变论域模糊集成控制[J]. 汽车工程,2014,36(5):527-531,545. DING Xiying,LI Lin,YU Hua,et al. Integrated DYC/ASR-based variable universe fuzzy control for electric vehicles[J]. Automotive Engineering,2014,36(5):527-531,545. [14] WANG H,ZHANG B,HU J,et al. Road surface recognition based slip rate and stability control of distributed drive electric vehicles under different conditions[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2022,237(10-11):2511-2526. [15] 王震坡,丁晓林,张雷. 四轮轮毂电机驱动电动汽车驱动防滑控制关键技术综述[J]. 机械工程学报,2019,55(12):99-120. WANG Zhenpo,DING Xiaolin,ZHANG Lei. Overview on key technologies of acceleration slip regulation for four-wheel-independently-actuated electric vehicles[J]. Journal of Mechanical Engineering,2019,55(12):99-120. [16] DING X,WANG Z,ZHANG L. Hybrid control-based acceleration slip regulation for four-wheel-independent- actuated electric vehicles[J]. IEEE Transactions on Transportation Electrification,2020,7(3):1976-1989. [17] ZHU J,WANG Z,ZHANG L,et al. Braking/steering coordination control for in-wheel motor drive electric vehicles based on nonlinear model predictive control[J]. Mechanism and Machine Theory,2019,142:1-20. [18] 何仁,冯海鹏. 自动紧急制动(AEB)技术的研究与进展[J]. 汽车安全与节能学报,2019,10(1):1-15. HE Ren,FENG Haipeng. Research and development of autonomous emergency brake (AEB) technology[J]. Journal of Automotive Safety and Energy,2019,10(1):1-15. [19] 余卓平,徐松云,熊璐,等. 集成式电子液压制动系统鲁棒性液压力控制[J]. 机械工程学报,2015,51(16):22-28. YU Zhuoping,XU Songyun,XIONG Lu,et al. Robustness hydraulic pressure control system of integrated-electro-hydraulic brake system[J]. Journal of Mechanical Engineering,2015,51(16):22-28. [20] TODESCHINI F,CORNO M,PANZANI G,et al. Adaptive cascade control of a brake-by-wire actuator for sport motorcycles[J]. IEEE/ASME Transactions on Mechatronics,2014,20(3):1310-1319. [21] PARK M,KIM S,YANG L,et al. Development of the control logic of electronically controlled hydraulic brake system for hybrid vehicle[R]. SAE Technical Paper,2009-01-1215. [22] 刘刚,徐文博,靳立强. 轮毂电机驱动电动汽车液压执行单元的压力估计与控制方法研究[J]. 汽车工程,2019,41(10):1138-1144. LIU Gang,XU Wenbo,JIN Liqiang. A study on pressure estimation and control method for hydraulic actuation unit of hub-motor-driven electric vehicle[J]. Automotive Engineering,2019,41(10):1138-1144. [23] 苑磊,何仁. 泰勒级数前馈迟滞补偿电液复合ABS滑移率控制[J]. 江苏大学学报(自然科学版),2023,44(1):29-36. YUAN Lei,HE Ren. Slip rate control of electro⁃hydraulic compound ABS based on taylor series feedforward hysteresis compensation[J]. Journal of Jiangsu University (Natural Science Edition),2023,44(1):29-36. [24] 张雷,于良耀,宋健,等. 电动汽车再生制动与液压制动防抱协调控制[J]. 清华大学学报(自然科学版),2016,56(2):152-159. ZHANG Lei,YU Liangyao,SONG Jian,et al. Coordinated anti-lock braking control of regenerative and hydraulic braking systems in electric vehicles[J]. Journal of Tsinghua University (Science and Technology),2016,56(2):152-159. [25] DU Y C,QIN C A,YOU S X,et al. Efficient coordinated control of regenerative braking with pneumatic anti-lock braking for hybrid electric vehicle[J]. Science China Technological Sciences,2017,60:399-411. [26] ZHANG L,YU L,PAN N,et al. Cooperative control of regenerative braking and friction braking in the transient process of anti-lock braking activation in electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2016,230(11):1459-1476. [27] AKSJONOV A,VODOVOZOV V,AUGSBURG K,et al. Design of regenerative anti-lock braking system controller for 4 in-wheel-motor drive electric vehicle with road surface estimation[J]. International Journal of Automotive Technology,2018,19:727-742. [28] 刘志强,濮晛. 电动汽车连续再生制动系统防抱死制动试验研究[J]. 汽车工程,2018,40(7):804-811. LIU Zhiqiang,PU Xian. An experimental study on anti-lock braking of continuous regenerative braking system in electric vehicles[J]. Automotive Engineering,2018,40(7):804-811. [29] ZHANG Z,MA R,WANG L,et al. Novel PMSM control for anti-lock braking considering transmission properties of the electric vehicle[J]. IEEE Transactions on Vehicular Technology,2018,67(11):10378-10386. [30] 何仁,李梦琪. 基于路面识别的复合制动与ABS集成控制策略[J]. 江苏大学学报(自然科学版),2020,41(1):20-26. HE Ren,LI Mengqi. Integrated control strategy of combined braking system and ABS based on road identification[J]. Journal of Jiangsu University (Natural Science Edition),2020,41(1):20-26. [31] LI L,LI X,WANG X,et al. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system[J]. Vehicle System Dynamics,2016,54(2):231-257. [32] 王骏骋,何仁. 电动车辆ABS的改进线性二次型最优控制[J]. 哈尔滨工业大学学报,2018,50(9):108-115. WANG Juncheng,HE Ren. Improved linear quadraticoptimal control of ABS for an electric vehicle[J]. Journal of Harbin Institute of Technology,2018,50(9):108-115. [33] YU H,TAHERI S,DUAN J,et al. An integrated cooperative antilock braking control of regenerative and mechanical system for a hybrid electric vehicle based on intelligent tire[J]. Asian Journal of Control,2016,18(1):55-68. [34] 牛礼民,周亚洲,杨洪源. 基于Agent的电液复合制动系统防抱死控制研究[J]. 中国机械工程,2017,28(13):1567-1573. NIU Limin,ZHOU Yazhou,YANG Hongyuan. Research on anti-lock control of electro-hydraulic braking systems based on agents[J]. China Mechanical Engineering,2017,28(13):1567-1573. [35] 张雷,刘青松,王震坡. 基于鲁棒积分滑模的四轮轮毂电机驱动电动汽车电液复合制动防抱死控制研究[J]. 机械工程学报,2022,58(24):243-253. ZHANG Lei,LIU Qingsong,WANG Zhenpo. Research on electro-hydraulic composite ABS control for four-wheel-independent-drive electric vehicles based on robust integral sliding mode control[J]. Journal of Mechanical Engineering,2022,58(24):243-253. [36] 熊璐,曲彤,冯源,等. 极限工况下车辆行驶的稳定性判据[J]. 机械工程学报,2015,51(10):103-111. XIONG Lu,QU Tong,FENG Yuan,et al. Stability criterion for the vehicle under critical driving situation[J]. Journal of Mechanical Engineering,2015,51(10):103-111. [37] 刘飞,熊璐,邓律华,等. 基于相平面法的车辆行驶稳定性判定方法[J]. 华南理工大学学报:自然科学版,2014,42(11):63-70. LIU Fei,XIONG Lu,DENG Lühua,et al. Vehicle stability criterion based on phase plane method[J]. Journal of South China University of Technology (Natural Science Edition),2014,42(11):63-70. [38] HUANG Y,LIANG W,CHEN Y. Stability regions of vehicle lateral dynamics:Estimation and analysis[J]. Journal of Dynamic Systems,Measurement,and Control,2021,143(5):1-12. [39] ERLIEN S M,FUJITA S,GERDES J C. Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems,2015,17(2):441-451. [40] FUNKE J,BROWN M,ERLIEN S M,et al. Collision avoidance and stabilization for autonomous vehicles in emergency scenarios[J]. IEEE Transactions on Control Systems Technology,2016,25(4):1204-1216. [41] CHUNG T,YI K. Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track[J]. IEEE Transactions on Control Systems Technology,2006,14(2):224-234. [42] DING X,WANG Z,ZHANG L,et al. A comprehensive vehicle stability assessment system based on enabling tire force estimation[J]. IEEE Transactions on Vehicular Technology,2022,71(11):11571-11588. [43] DU H,ZHANG N,NAGHDY F. Velocity-dependent robust control for improving vehicle lateral dynamics[J]. Transportation Research Part C:Emerging Technologies,2011,19(3):454-468. [44] ARIPIN M K,MD SAM Y,DANAPALASINGAM K A,et al. A review of active yaw control system for vehicle handling and stability enhancement[J]. International Journal of Vehicular Technology,2014,2014:437515. [45] ZHENG B,ANWAR S. Yaw stability control of a steer-by-wire equipped vehicle via active front wheel steering[J]. Mechatronics,2009,19(6):799-804. [46] ZHAO W,QIN X,WANG C. Yaw and lateral stability control for four-wheel steer-by-wire system[J]. IEEE/ASME Transactions on Mechatronics,2018,23(6):2628-2637. [47] 赵轩,王姝,马建,等. 分布式驱动电动汽车底盘集成控制技术综述[J]. 中国公路学报,2023,36(4):221-248. ZHAO Xuan,WANG Shu,MA Jian,et al. Review of chassis integrated control technology for distributed drive electric vehicles[J]. China Journal of Highway and Transport,2023,36(4):221-248. [48] ZHANG Z,ZHANG L,WANG C,et al. Integrated decision making and motion control for autonomous emergency avoidance based on driving primitives transition[J]. IEEE Transactions on Vehicular Technology,2022,72(4):4207-4221. [49] FENG C,DING N,HE Y,et al. Integrated control of automobile ABS/DYC/AFS for improving braking performance and stability[J]. International Journal of Vehicle Design,2015,67(3):259-293. [50] ZHAI L,SUN T,WANG J. Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle[J]. IEEE Transactions on Vehicular Technology,2016,65(6):4726-4739. [51] ZHAO Q,ZHU B,PEI Y,et al. Integrated control of electric power steering and active suspension systems based on model predictive algorithm[J]. International Journal of Applied Electromagnetics and Mechanics,2021,65(4):681-701. [52] 唐小林,陈佳信,刘腾,等. 基于深度强化学习的混合动力汽车智能跟车控制与能量管理策略研究[J]. 机械工程学报,2021,57(22):237-246. TANG Xiaolin,CHEN Jiaxin,LIU Teng,et al. Research on deep reinforcement learning-based intelligent car-following control and energy management strategy for hybrid electric vehicles[J]. Journal of Mechanical Engineering,2021,57(22):237-246. [53] 吴建洋,王震坡,张雷,等. 四轮轮毂电机驱动电动汽车纵侧向稳定性协调控制策略研究[J]. 机械工程学报,2023,59(4):163-172. WU Jianyang,WANG Zhenpo,ZHANG Lei,et al. Coordination stability control strategy for four-wheel- independent-actuated electric vehicles[J]. Journal of Mechanical Engineering,2023,59(4):163-172. [54] ATAEI M,KHAJEPOUR A,JEON S. Model predictive control for integrated lateral stability,traction/braking control,and rollover prevention of electric vehicles[J]. Vehicle System Dynamics,2020,58(1):49-73. [55] ZHANG L,ZHANG Z,WANG Z,et al. Chassis coordinated control for full x-by-wire vehicles—A review[J]. Chinese Journal of Mechanical Engineering,2021,34:1-25. [56] ZHAO J,WONG P K,MA X,et al. Chassis integrated control for active suspension,active front steering and direct yaw moment systems using hierarchical strategy[J]. Vehicle System Dynamics,2017,55(1):72-103. [57] ZHAO H,CHEN W,ZHAO J,et al. Modular integrated longitudinal,lateral,and vertical vehicle stability control for distributed electric vehicles[J]. IEEE Transactions on Vehicular Technology,2019,68(2):1327-1338. [58] WANG C,WANG Z,ZHANG L,et al. Post-impact motion planning and tracking control for autonomous vehicles[J]. Chinese Journal of Mechanical Engineering,2022,35(1):1-18. [59] 唐小林,陈佳信,高博麟,等. 基于云控系统高精度地图驱动的深度强化学习型混合动力汽车集成控制[J]. 机械工程学报,2022,58(24):163-177. TANG Xiaolin,CHEN Jiaxin,GAO Bolin,et al. Deep reinforcement learning-based integrated control of hybrid electric vehicles driven by high definition map in cloud control system[J]. Journal of Mechanical Engineering,2022,58(24):163-177. [60] 张利鹏,李亮,祁炳楠. 轮毂电机驱动电动汽车侧倾稳定性解耦控制[J]. 机械工程学报,2017(16):94-104. ZHANG Lipeng,LI Liang,QI Bingnan. Decoupled roll stability control of in-wheel motor drive electric vehicle[J]. Journal of Mechanical Engineering,2017(16):94-104. [61] TERMOUS H,SHRAIM H,TALJ R,et al. Coordinated control strategies for active steering,differential braking and active suspension for vehicle stability,handling and safety improvement[J]. Vehicle System Dynamics,2018,57(10):1494-1529. [62] WANG C,WANG Z,ZHANG L,et al. A vehicle rollover evaluation system based on enabling state and parameter estimation[J]. IEEE Transactions on Industrial Informatics,2020,17(6):4003-4013. [63] LARISH C,PIYABONGKARN D,TSOURAPAS V,et al. A new predictive lateral load transfer ratio for rollover prevention systems[J]. IEEE Transactions on Vehicular Technology,2013,62(7):2928-2936. [64] YANG H,LIU L. A robust active suspension controller with rollover prevention[J]. SAE Transactions,2003,112:992-997. [65] SHAO K,ZHENG J,HUANG K. Robust active steering control for vehicle rollover prevention[J]. International Journal of Modelling,Identification and Control,2019,32(1):70-84. [66] 靳立强,石冠男,于雅静,等. 基于零力矩点位置和模糊控制的商用车防侧翻控制[J]. 汽车工程,2017,39(9):1062-1067. JIN Liqiang,SHI Guannan,YU Yajing,et al. Anti-roll control for commercial vehicles based on zero-moment point position and fuzzy control[J]. Automotive Engineering,2017,39(9):1062-1067. [67] 祁炳楠,王胜,张思龙,等. 基于能量法的分布式驱动电动汽车防侧翻控制[J]. 机械工程学报,2019,55(22):183-192. QI Bingnan,WANG Sheng,ZHANG Silong,et al. Anti-rollover control of distributed drive electric vehicle based on energy method[J]. Journal of Mechanical Engineering,2019,55(22):183-192. [68] WANG W,ZHANG W,ZHAO Y. Integrated stability control strategy of in-wheel motor driven electric bus[J]. International Journal of Automotive Technology,2020,21:919-929. [69] LIANG J,LU Y,PI D,et al. A decentralized cooperative control framework for active steering and active suspension:Multi-agent approach[J]. IEEE Transactions on Transportation Electrification,2021,8(1):1414-1429. [70] 张利鹏,段嘉瑶,苏泰,等. 电动轮驱动汽车空间稳定性底盘协同控制[J]. 机械工程学报,2022,58(10):209-221. ZHANG Lipeng,DUAN Jiayao,SU Tai,et al. Chassis cooperative control of in-wheel motors drive electric vehicle for improving spatial stability[J]. Journal of Mechanical Engineering,2022,58(10):209-221. [71] WANG Z,DING X,ZHANG L. Chassis coordinated control for full x-by-wire four-wheel-independent-drive electric vehicles[J]. IEEE Transactions on Vehicular Technology,2023,72(4):4394-4410. [72] CUI T,ZHAO W,WANG C,et al. Design optimization of a steering and suspension integrated system based on dynamic constraint analytical target cascading method[J]. Structural and Multidisciplinary Optimization,2020,62:419-437. [73] HUANG C,NAGHDY F,DU H,et al. Fault tolerant steer-by-wire systems:An overview[J]. Annual Reviews in Control,2019,47:98-111. [74] 褚文博,罗禹贡,韩云武,等. 基于规则的分布式电驱动车辆驱动系统失效控制[J]. 机械工程学报,2012,48(10):90-95,102. CHU Wenbo,LUO Yugong,HAN Yunwu,et al. Rule-based traction system failure control of distributed electric drive vehicle[J]. Journal of Mechanical Engineering,2012,48(10):90-95,102. [75] MUTOH N,TAKAHASHI Y,TOMITA Y. Failsafe drive performance of FRID electric vehicles with the structure driven by the front and rear wheels independently[J]. IEEE Transactions on Industrial Electronics,2008,55(6):2306-2315. [76] LI B,DU H,LI W. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers[J]. Mechanical Systems and Signal Processing,2016,72:462-485. [77] 张雷,余文,王震坡,等. 基于多方法切换的四轮轮毂电机驱动电动汽车容错控制策略[J]. 机械工程学报,2020,56(16):227-239. ZHANG Lei,YU Wen,WANG Zhenpo,et al. Fault tolerant control based on multi-methods switching for four-wheel-independently-actuated electric vehicles[J]. Journal of Mechanical Engineering,2020,56(16):227-239.. [78] WANG R,WANG J. Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles[J]. IEEE Transactions on Vehicular Technology,2012,62(3):972-985. [79] WANG Y,DENG W,WU J,et al. Allocation-based fault tolerant control for electric vehicles with x-by-wire[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems,2014,7(1):256-263. [80] YANG H,COCQUEMPOT V,JIANG B. Optimal fault-tolerant path-tracking control for 4WS4WD electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2009,11(1):237-243. [81] GANG L,PINGSHU G,JUNJIE L,et al. Fault tolerant control for distributed drive electric vehicle based on co-simulation of carsim and matlab[J]. IFAC- PapersOnLine,2021,54(10):514-519. [82] LIU L,SHI K,YUAN X,et al. Multiple model-based fault-tolerant control system for distributed drive electric vehicle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41:1-15. [83] 刘国海,陈旭芳,张多. 基于LPV增益调度技术的4WID电动汽车容错控制[J]. 机械设计与制造工程,2018,47(4):60-65. LIU Guohai,CHEN Xufang,ZHANG Duo. Fault-tolerant control of four-wheel independently driven electric vehicles based on LPV gain-scheduling technique[J]. Machine Design and Manufacturing Engineering,2018,47(4):60-65. [84] ZHANG B,LU S. Fault-tolerant control for four-wheel independent actuated electric vehicle using feedback linearization and cooperative game theory[J]. Control Engineering Practice,2020,101:1-16. [85] ZHANG G,ZHANG H,HUANG X,et al. Active fault-tolerant control for electric vehicles with independently driven rear in-wheel motors against certain actuator faults[J]. IEEE Transactions on Control Systems Technology,2015,24(5):1557-1572. [86] HUANG C,NAGHDY F,DU H. Fault tolerant sliding mode predictive control for uncertain steer-by-wire system[J]. IEEE Transactions on Cybernetics,2017,49(1):261-272. [87] 田承伟,宗长富,姜国彬,等. 基于双自适应Kalman滤波的线控转向汽车传感器故障诊断[J]. 中国公路学报,2009,22(4):115-121. TIAN Chengwei,ZONG Changfu,JIANG Guobin,et al. Sensor fault diagnosis for steer-by-wire car based on dual adaptive Kalman filter[J]. China Journal of Highway and Transport,2009,22(4):115-121. [88] 何磊,马伯祥,宗长富. 线控转向汽车转向盘转角传感器的容错控制策略[J]. 汽车工程,2015,37(3):327-330. HE Lei,MA Boxiang,ZONG Changfu. Fault-tolerance control strategy for the steering wheel angle sensor of a steer-by-wire vehicle[J]. Automotive Engineering,2015,37(3):327-330. [89] MATSUNAGA N,IM J,KAWAJI S. Control of steering-by-wire system of electric vehicle using bilateral control designed by passivity approach[J]. Journal of System Design and Dynamics,2010,4(1):50-60. [90] BOUKHARI M R,CHAIBET A,BOUKHNIFER M,et al. Proprioceptive sensors’ fault tolerant control strategy for an autonomous vehicle[J]. Sensors,2018,18(6):1-24. [91] 付秀伟,孔峰,付莉. 基于粒子群神经网络线控转向故障诊断的研究[J]. 传感器与微系统,2010(9):39-41. FU Xiuwei,KONG Feng,FU Li. Research on fault diagnosis for steer-by-wire system based on particle swarm optimization neural network[J]. Transducer and Microsystem Technologies,2010(9):39-41. [92] HUANG C,NAGHDY F,DU H. Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems[J]. IEEE Transactions on Control Systems Technology,2017,26(5):1810-1817. [93] SIONTOROU C G,BATZIAS F A,TSAKIRI V. A knowledge-based approach to online fault diagnosis of FET biosensors[J]. IEEE Transactions on Instrumentation and Measurement,2009,59(9):2345-2364. [94] SALMASI F R. A self-healing induction motor drive with model free sensor tampering and sensor fault detection,isolation,and compensation[J]. IEEE Transactions on Industrial Electronics,2017,64(8):6105-6115. [95] 张雷,王子浩,孙逢春,等. 四轮轮毂电机驱动智能电动汽车转向失效容错控制研究[J]. 机械工程学报,2021,57(20):141-152. ZHANG Lei,WANG Zihao,SUN Fengchun,et al. Fault-tolerant control for intelligent four-wheel- independently-actuated electric vehicles under complete steer-by-wire system failure[J]. Journal of Mechanical Engineering,2021,57(20):141-152. [96] HU C,WANG R,YAN F,et al. Differential steering based yaw stabilization using ISMC for independently actuated electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2017,19(2):627-638. [97] 罗禹贡,陈锐,胡云. 分布式电驱动车辆线控转向系统MFAC主动容错控制[J]. 机械工程学报,2020,55(22):131-139. LUO Yugong,CHEN Rui,HU Yun. Active fault-tolerant control based on MFAC or 4WID EV with steering by wire system[J]. Journal of Mechanical Engineering,2020,55(22):131-139. [98] 张志勇,唐磊,郝威,等. 轮毂驱动电动汽车差动助力转向变论域模糊PID控制[J]. 汽车安全与节能学报,2019,10(2):169-177. ZHANG Zhiyong,TANG Lei,HAO Wei,et al. Differential power steering control for in-wheel motored electric vehicle based on variable universe fuzzy PID[J]. Journal of Automotive Safety and Energy,2019,10(2):169-177. [99] DANG M,ZHANG C,YANG Z,et al. Research on steering coordination control strategy for distributed drive electric vehicles[J]. AIP Advances,2023,13(2):1-15. [100] 徐兴,卢山峰,陈龙,等. 基于差动和自主转向协调的分布式驱动无人车轨迹跟踪[J]. 汽车工程,2018,40(4):475-481. XU Xing,LU Shanfeng,CHEN Long,et al. Trajectory tracking of distributed-drive self-driving vehicle based on coordination between autonomous steering and differential steering[J]. Automotive Engineering,2018,40(4):475-481. [101] CHEN L,LI X,XIAO W,et al. Fault-tolerant control for uncertain vehicle active steering systems with time-delay and actuator fault[J]. International Journal of Control,Automation and Systems,2019,17:2234-2241. [102] 卢山峰,徐兴,陈龙,等. 轮毂电机驱动汽车电子差速与差动助力转向的协调控制[J]. 机械工程学报,2017,53(16):79-85. LU Shanfeng,XU Xing,CHEN Long,et al. Coordinated control of electronic differential and differential assist steering for electric vehicle driven by in-wheel motors[J]. Journal of Mechanical Engineering,2017,53(16):79-85. [103] WANG J,LUO Z,WANG Y,et al. Coordination control of differential drive assist steering and vehicle stability control for four-wheel-independent-drive EV[J]. IEEE Transactions on Vehicular Technology,2018,67(12):11453-11467. [104] SUN W,ZHAO Z,GAO H. Saturated adaptive robust control for active suspension systems[J]. IEEE Transactions on Industrial Electronics,2012,60(9):3889-3896. [105] MORATO M M,NGUYEN M Q,SENAME O,et al. Design of a fast real-time LPV model predictive control system for semi-active suspension control of a full vehicle[J]. Journal of the Franklin Institute,2019,356(3):1196-1224. [106] NA J,HUANG Y,WU X,et al. Active adaptive estimation and control for vehicle suspensions with prescribed performance[J]. IEEE Transactions on Control Systems Technology,2017,26(6):2063-2077. [107] NAN Y,SHI W,FANG P. Improvement of ride performance with an active suspension based on fuzzy logic control[J]. Journal of Vibration Engineering,2016,18(6):3941-3955. [108] 马晓月. 加减速工况下抗俯仰运动的半主动悬架控制方法[D]. 哈尔滨:哈尔滨工业大学,2020. MA Xiaoyue. Semi-active suspension control for anti-pitch movement under acceleration and deceleration conditions[D]. Harbin:Harbin Institute of Technology,2020. [109] ELTANTAWIE M A. Decentralized neuro-fuzzy control for half car with semi-active suspension system[J]. International Journal of Automotive Technology,2012,13:423-431. [110] LIU X,SONG J,YU L,et al. Study on ride comfort in post-braking phase based on brake-by-wire system[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2023,237(2-3):381-392. [111] TAVERNINI D,VELENIS E,LONGO S. Feedback brake distribution control for minimum pitch[J]. Vehicle System Dynamics,2017,55(6):902-923. [112] QIN Y,ZHAO Z,WANG Z,et al. Study of longitudinal–vertical dynamics for in-wheel motor-driven electric vehicles[J]. Automotive Innovation,2021,4:227-237. [113] ZHANG J,SUN W,LIU Z,et al. Comfort braking control for brake-by-wire vehicles[J]. Mechanical Systems and Signal Processing,2019,133:1-12. [114] AGHASIZADE S,MIRZAEI M,RAFATNIA S. Novel constrained control of active suspension system integrated with anti-lock braking system based on 14-degree of freedom vehicle model[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2018,232(4):501-520. [115] KARNOPP D,CROSBY M J,HARWOOD R A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry,1974,96(2):619-626. [116] GP S,MM K. A contemporary adaptive air suspension using LQR control for passenger vehicles[J]. ISA Transactions,2019,93:244-254. [117] YILDIZ A S,SIVRIOĞLU S. Constrained adaptive backstepping control of a semi-active suspension considering suspension travel limits[J]. Asian Journal of Control,2021,23(3):1380-1393. [118] 庞辉,付文强,刘凯,等. 基于天棚控制的半主动悬架建模及稳定性分析[J]. 汽车工程,2015,37(10):1167-1173. PANG Hui,FU Wenqiang,LIU Kai,et al. Modeling and stability analysis of semi-active suspension with sky-hook control[J]. Automotive Engineering,2015,37(10):1167-1173. [119] 李武杰,陈从根,郭立新. 基于微分几何法的主动悬架鲁棒H∞控制[J]. 东北大学学报(自然科学版),2019,40(5):716-721. LI Wujie,CHEN Conggen,GUO Lixin. Robust H∞ control of active suspension based on differential geometry[J]. Journal of Northeastern University (Natural Science),2019,40(5):716-721. [120] 寇发荣,高亚威,景强强,等. 基于路面等级自适应的主动悬架LQG控制[J]. 振动与冲击,2020,39(23):30-37. KOU Farong,GAO Yawei,JING Qiangqiang,et al. LQG control of active suspension based on adaptive road surface level[J]. Journal of Vibration and Shock,2020,39(23):30-37. [121] NA J,HUANG Y,WU X,et al. Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay[J]. IEEE Transactions on Cybernetics,2019,50(6):2639-2650. [122] LI Y,WANG T,LIU W,et al. Neural network adaptive output-feedback optimal control for active suspension systems[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,52(6):4021-4032. [123] 韩以伦,李国珊,陈涛. 双激励下轮毂电机悬置构型对电动车平顺性的影响[J]. 哈尔滨工业大学学报,2020,52(9):193-200. HAN Yilun,LI Guoshan,CHEN Tao. Effect of in-wheel motor suspended configuration on ride comfort of electric vehicle under dual excitations[J]. Journal of Harbin Institute of Technology,2020,52(9):193-200. [124] 李韶华,张培强,杨建森. 轮毂电机驱动电动汽车主动悬架T-S变论域模糊控制研究[J]. 振动与冲击,2022,41(24):201-209. LI Shaohua,ZHANG Peiqiang,YANG Jiansen. Research on T-S variable domain fuzzy control of active suspension on the electric vehicle driven by an in-wheel motor[J]. Journal of Vibration and Shock,2022,41(24):201-209. [125] ALTHOFF M,MAIERHOFER S,PEK C. Provably- correct and comfortable adaptive cruise control[J]. IEEE Transactions on Intelligent Vehicles,2020,6(1):159-174. [126] LIU X,SONG J,YU L,et al. Study on ride comfort in post-braking phase based on brake-by-wire system[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2023,237(2-3):381-392. [127] HAMERSMA H A,ELS P S. Improving the braking performance of a vehicle with ABS and a semi-active suspension system on a rough road[J]. Journal of Terramechanics,2014,56:91-101. [128] ZHANG J,YANG Y,HU M,et al. Longitudinal-vertical comprehensive control for four-wheel drive pure electric vehicle considering energy recovery and ride comfort[J]. Energy,2021,236:1-18. |
[1] | 杨泽坤, 李韶华, 王振峰. 基于自适应变参数MPC的分布式驱动智能车轨迹跟踪控制[J]. 机械工程学报, 2024, 60(6): 363-377. |
[2] | 丁孺琦, 熊文杰, 程敏, 徐兵. 智能化阀口独立电液控制系统安全性能评估[J]. 机械工程学报, 2024, 60(4): 101-112. |
[3] | 金贤建, 王佳栋, 徐利伟, 严择圆, 卢彦博, 殷国栋, 陈南. 轮毂电机驱动电动汽车主动悬架μ综合鲁棒控制研究[J]. 机械工程学报, 2024, 60(16): 259-269. |
[4] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[5] | 张雷, 王祺, 王震坡, 丁晓林, 孙逢春. 基于线控制动的分布式驱动电动汽车制动俯仰角舒适控制研究[J]. 机械工程学报, 2024, 60(10): 463-475. |
[6] | 赵明慧, 郭浩然, 张利鹏, 刘欣. 四轮独立转向分布式驱动电动汽车单轮转向失效行驶稳定性控制[J]. 机械工程学报, 2024, 60(10): 507-522. |
[7] | 吴建洋, 王震坡, 张雷, 丁晓林. 四轮轮毂电机驱动电动汽车纵侧向稳定性协调控制策略研究[J]. 机械工程学报, 2023, 59(4): 163-172. |
[8] | 肖宗鑫, 胡明辉, 石力王, 周安健. 电动汽车内置式永磁同步电机转子温度在线估计[J]. 机械工程学报, 2023, 59(24): 209-222. |
[9] | 来鑫, 马云杰, 郑岳久, 韩雪冰. 一种基于几何特征变换与迁移的锂离子电池电化学阻抗谱曲线重构方法[J]. 机械工程学报, 2023, 59(22): 140-149. |
[10] | 邵嗣杨, 马翔, 袁伟, 张开宇, 傅晓飞, 黄晨宏. 含电动汽车的不确定性微电网鲁棒优化调度方法*[J]. 电气工程学报, 2023, 18(2): 201-209. |
[11] | 魏洪乾, 赵文强, 艾强, 张幽彤, 王洪荣, 赖晨光, 邹喜红. 轮毂电机独立驱动电动汽车线性时变模型预测主动安全控制[J]. 机械工程学报, 2023, 59(14): 190-201. |
[12] | 沈童, 殷国栋, 任彦君, 王凡勋, 梁晋豪, 沙文瀚. 考虑轮胎弛豫特性的轮毂电机驱动电动汽车鲁棒自适应驱动防滑控制[J]. 机械工程学报, 2023, 59(14): 222-236. |
[13] | 李达, 张普琛, 林倪, 张照生, 王震坡, 邓钧君. 基于多模型耦合的电动汽车三电系统安全性估计方法[J]. 机械工程学报, 2023, 59(12): 354-363. |
[14] | 赵治国, 陈晓蓉, 梁凯冲, 郭潇然, 李涛. 考虑乘坐舒适性的纯电动公交车辆稳定性控制[J]. 机械工程学报, 2023, 59(10): 250-262. |
[15] | 赵敬玉, 徐铖, 李晓宇. 基于实际行驶数据的电动汽车能耗分析与预测[J]. 机械工程学报, 2023, 59(10): 263-274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||