机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 304-324.doi: 10.3901/JME.2023.20.304
王聪1, 胡文1, 李文博1, 邢阳2, 陈宏昌1,3, 曹东璞1
收稿日期:
2023-06-29
修回日期:
2023-09-12
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
曹东璞(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为驾驶员认知、自动驾驶和认知自动驾驶。E-mail:dp_cao2016@163.com
作者简介:
王聪,男,1994年出生,博士,博士后。主要研究方向为车辆运动规划与动力学控制。E-mail:congwang@tsinghua.edu.cn
基金资助:
WANG Cong1, HU Wen1, LI Wenbo1, XING Yang2, CHEN Hongchang1,3, CAO Dongpu1
Received:
2023-06-29
Revised:
2023-09-12
Online:
2023-10-20
Published:
2023-12-08
摘要: 当前自动驾驶技术处于L3向L4的快速发展中,提升自动驾驶系统的场景适应能力成为现阶段主要任务。在城市混合交通流场景下,道路拓扑结构更为复杂,交通参与单元类型众多,车流量更加密集,存在显著的强交互博弈过程,给自动驾驶车辆的安全高效通行带来巨大挑战。同时,城市出行需求更加多样,随着智能座舱和人工智能技术的发展,对车辆智能化和人性化服务的期望日益提高。因此,赋予自动驾驶系统社会化属性和社会认知能力,在提升自动驾驶车辆行驶安全高效性的同时,更好地服务舱内驾乘人员,成为当前自动驾驶技术重要发展目标。面向智能网联汽车安全驾驶脑,通过自动驾驶、认知心理学和社会心理学多学科交叉融合,提出社会认知自动驾驶框架;其次针对车外交互围绕面向社会认知的车辆侵略性建模、强交互场景的社会认知决策以及紧急工况认知决策展开前期研究,针对车内交互围绕智能座舱场景-功能体系、舱内人员情绪认知与调节以及基于社会认知自动驾驶的人机接管展开前期研究;最后进行提炼和总结。
中图分类号:
王聪, 胡文, 李文博, 邢阳, 陈宏昌, 曹东璞. 社会认知自动驾驶[J]. 机械工程学报, 2023, 59(20): 304-324.
WANG Cong, HU Wen, LI Wenbo, XING Yang, CHEN Hongchang, CAO Dongpu. Social Cognitive Autonomous Driving[J]. Journal of Mechanical Engineering, 2023, 59(20): 304-324.
[1] WANG J,HUANG H,LI K,et al. Towards the unified principles for level 5 autonomous vehicles[J]. Engineering,2021,7(9):1313-1325. [2] 金智林,何少炜,黄舒伟. 融合侧翻稳定性的SUV换道轨迹规划方法研究[J]. 机械工程学报,2023,59(4):145-154. JIN Zhilin,HE Shaowei,HUANG Shuwei. Research on SUV lane changing trajectory planning method integrating rollover stability[J]. Journal of Mechanical Engineering,2023,59(4):145-154. [3] WU Y,LI B,DU H,et al. Fault-tolerant prescribed performance control of active suspension based on approximation-free method[J]. Vehicle System Dynamics,2022,60(5):1642-1667. [4] WANG C,WANG Z,ZHANG L,et al. Post-impact motion planning and tracking control for autonomous vehicles[J]. Chinese Journal of Mechanical Engineering,2022,35(1):54. [5] LI W,WU L,WANG C,et al. Intelligent cockpit for intelligent vehicle in metaverse:A case study of empathetic auditory regulation of human emotion[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2023,53(4):2173-2187. [6] 黄晶,陈紫琳,杨梦婷,等. 自适应自动驾驶等级的驾驶人状态监测模型研究[J]. 机械工程学报,2023,59(2):187-198. HUANG Jing,CHEN Zilin,YANG Mengting,et al. Research on driving automation level-adaptive driver condition monitoring models[J]. Journal of Mechanical Engineering,2023,59(2):187-198. [7] WANG W,WANG L,ZHANG C,et al. Social interactions for autonomous driving:A review and perspectives[J]. Foundations and Trends® in Robotics,2022,10(3-4):198-376. [8] LEE Y M,MADIGAN R,GILES O,et al. Road users rarely use explicit communication when interacting in today’s traffic:Implications for automated vehicles[J]. Cognition,Technology & Work,2021,23(2):367-380. [9] MÜLLER L,RISTO M,EMMENEGGER C. The social behavior of autonomous vehicles[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing:Adjunct,Heidelberg,Germany,2016:686-689. [10] CHATER N,MISYAK J,WATSON D,et al. Negotiating the traffic:Can cognitive science help make autonomous vehicles a reality?[J]. Trends in Cognitive Sciences,2018,22(2):93-95. [11] WANG L,SUN L,TOMIZUKA M,et al. Socially-compatible behavior design of autonomous vehicles with verification on real human data[J]. IEEE Robotics and Automation Letters,2021,6(2):3421-3428. [12] WILDE G J S. Social interaction patterns in driver behavior:An introductory review[J]. Human Factors,1976,18(5):477-492. [13] WILDE G J S. Immediate and delayed social interaction in road user behaviour[J]. Applied Psychology,1980,29(4):439-460. [14] WANG M,WANG Z,TALBOT J,et al. Game-theoretic planning for self-driving cars in multivehicle competitive scenarios[J]. IEEE Transactions on Robotics,2021,37(4):1313-1325. [15] WANG X,ZHANG J,LIU Y,et al. The drivers’ lane selection model based on mixed fuzzy many-person multi-objective non-cooperative game[J]. Journal of Intelligent & Fuzzy Systems,2017,32(6):4235-4246. [16] LI D,PAN H. Two-lane two-way overtaking decision model with driving style awareness based on a game-theoretic framework[J]. Transportmetrica A:Transport Science,2022,19(3):1-26. [17] LANDOLFI N C,DRAGAN A D. Social cohesion in autonomous driving[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Madrid,Spain,2018:8118-8125. [18] SCHWARTING W,PIERSON A,ALONSO-MORA J,et al. Social behavior for autonomous vehicles[J]. Proceedings of the National Academy of Sciences,2019,116(50):24972-24978. [19] LI C,TRINH T,WANG L,et al. Efficient game-theoretic planning with prediction heuristic for socially-compliant autonomous driving[J]. IEEE Robotics and Automation Letters,2022,7(4):10248-10255. [20] ZHANG Q,LANGARI R,TSENG H E,et al. A game theoretic model predictive controller with aggressiveness estimation for mandatory lane change[J]. IEEE Transactions on Intelligent Vehicles,2020,5(1):75-89. [21] WANG H,WANG W,YUAN S,et al. On social interactions of merging behaviors at highway on-ramps in congested traffic[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(8):11237-11248. [22] DEO N,TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,Salt Lake City,UT,USA,2018:1468-1476. [23] CROSATO L,SHUM H P H,HO E S L,et al. Interaction-aware decision-making for automated vehicles using social value orientation[J]. IEEE Transactions on Intelligent Vehicles,2023,8(2):1339-1349. [24] CAO D,LI J,MA H,et al. Spectral temporal graph neural network for trajectory prediction[C]//2021 IEEE International Conference on Robotics and Automation (ICRA),Xi’an,China,2021:1839-1845. [25] YUAN Y,WENG X,OU Y,et al. Agentformer:Agent-aware transformers for socio-temporal multi-agent forecasting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Montreal,QC,Canada,2021:9813-9823. [26] HELBING D,MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E,1995,51(5):4282-4286. [27] YANG D,ÖZGÜNER Ü,REDMILL K. Social force based microscopic modeling of vehicle-crowd interaction[C]//2018 IEEE Intelligent Vehicles Symposium (IV),Changshu,China,2018:1537-1542. [28] WANG J,WU J,LI Y. The driving safety field based on driver–vehicle–road interactions[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(4):2203-2214. [29] ANVARI B,BELL M G H,SIVAKUMAR A,et al. Modelling shared space users via rule-based social force model[J]. Transportation Research Part C:Emerging Technologies,2015,51:83-103. [30] CHEN Y,LI S,TANG X,et al. Interaction-aware decision making for autonomous vehicles[J]. IEEE Transactions on Transportation Electrification,2023,9(3):4704-4715. [31] HANG P,LÜ C,HUANG C,et al. An integrated framework of decision making and motion planning for autonomous vehicles considering social behaviors[J]. IEEE Transactions on Vehicular Technology,2020,69(12):14458-14469. [32] HANG P,LÜ C,HUANG C,et al. Human-like lane-change decision making for automated driving with a game theoretic approach[C]//2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI),Hangzhou,China,2020:708-713. [33] HANG P,LÜ C,XING Y,et al. Human-like decision making for autonomous driving:A noncooperative game theoretic approach[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(4):2076-2087. [34] STEFANSSON E. Hierarchical dynamic games for human-robot interaction with applications to autonomous vehicles[D]. Stockholm:KTH Royal Institute of Technology,2018. [35] STEFANSSON E,FISAC J F,SADIGH D,et al. Human-robot interaction for truck platooning using hierarchical dynamic games[C]//2019 18th European Control Conference (ECC),Naples,Italy,2019:3165-3172. [36] MONSELL S. Task switching[J]. Trends in Cognitive Sciences,2003,7(3):134-140. [37] BONNEFON J F,SHARIFF A,RAHWAN I. The social dilemma of autonomous vehicles[J]. Science,2016,352(6293):1573-1576. [38] GLASER R. The future of testing:A research agenda for cognitive psychology and psychometrics[J]. American Psychologist,1981,36(9):923-936. [39] STERNBERG R J. Cognitive psychology[M]. Orlando:Harcourt Brace College Publishers,1996. [40] ASHCRAFT M H. Cognitive psychology and simple arithmetic:A review and summary of new directions[J]. Mathematical Cognition,1995,1(1):3-34. [41] MERIKLE P M,SMILEK D,EASTWOOD J D. Perception without awareness:Perspectives from cognitive psychology[J]. Cognition,2001,79(1):115-134. [42] CHURCHLAND P S,SEJNOWSKI T J. Perspectives on cognitive neuroscience[J]. Science,1988,242(4879):741-745. [43] EYSENCK M W,KEANE M T. Cognitive psychology:A student's handbook[M]. London:Taylor & Francis,2005. [44] LACHMAN R,LACHMAN J L,BUTTERFIELD E C. Cognitive psychology and information processing:An introduction[M]. Vermont:Psychology Press,2015. [45] REGEHR G,NORMAN G R. Issues in cognitive psychology:Implications for professional education[J]. Academic Medicine,1996,71(9):988-1001. [46] FEHR E,SCHURTENBERGER I. Normative foundations of human cooperation[J]. Nature Human Behaviour,2018,2(7):458-468. [47] MCDOUGALL W. An introduction to social psychology [M]. Vermont:Psychology Press,2015. [48] GERGEN K J. Social psychology as history[J]. Journal of Personality and Social Psychology,1973,26(2):309-320. [49] MURPHY G,MURPHY L B. Experimental social psychology[M]. Oxford:Harper,1931. [50] JAMES L R,HATER J J,GENT M J,et al. Psychological climate:Implications from cognitive social learning theory and interactional psychology[J]. Personnel Psychology,1978,31(4):783-813. [51] SCHUNK D H,DIBENEDETTO M K. Motivation and social cognitive theory[J]. Contemporary Educational Psychology,2020,60:101832. [52] SMITH E R. What do connectionism and social psychology offer each other?[J]. Journal of Personality and Social Psychology,1996,70(5):893-912. [53] LERNER J S,LI Y,VALDESOLO P,et al. Emotion and decision making[J]. Annual Review of Psychology,2015,66(1):799-823. [54] FEHR E,FISCHBACHER U. Social norms and human cooperation[J]. Trends in Cognitive Sciences,2004,8(4):185-190. [55] 唐小林,陈佳信,高博麟,等. 基于云控系统高精度地图驱动的深度强化学习型混合动力汽车集成控制[J]. 机械工程学报,2022,58(24):163-177. TANG Xiaolin,CHEN Jiaxin,GAO Bolin,et al. Deep reinforcement learning-based integrated control of hybrid electric vehicles driven by high definition map in cloud control system[J]. Journal of Mechanical Engineering,2022,58(24):163-177. [56] BERTHELOT A,TAMKE A,DANG T,et al. Stochastic situation assessment in advanced driver assistance system for complex multi-objects traffic situations[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,Vilamoura-Algarve,Portugal,2012:1180-1185. [57] CHANG T H,CHEN-JU C. Rear-end collision warning system on account of a rear-end monitoring camera[C]//2009 IEEE Intelligent Vehicles Symposium,Xi’an,China,2009:913-917. [58] JOERER S,SEGATA M,BLOESSL B,et al. A vehicular networking perspective on estimating vehicle collision probability at intersections[J]. IEEE Transactions on Vehicular Technology,2014,63(4):1802-1812. [59] RAKSINCHAROENSAK P,AKAMATSU Y,MORO K,et al. Driver speed control modeling for predictive braking assistance system based on risk potential in intersections[J]. Journal of Robotics and Mechatronics,2014,26(5):628-637. [60] ANDERSON C A,BUSHMAN B J. Human aggression[J]. Annual Review of Psychology,2002,53(1):27-51. [61] HU W,DENG Z,WU Y,et al. Formulating vehicle aggressiveness towards social cognitive autonomous driving[J]. IEEE Transactions on Intelligent Vehicles,2023,8(3):2097-2109. [62] ZENG L,HU W,ZHANG B,et al. Risk-aware deep reinforcement learning for decision-making and planning of autonomous vehicles[C]//2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI),Nanjing,China,2022:1-6. [63] LI S,SHU K,CHEN C,et al. Planning and decision-making for connected autonomous vehicles at road intersections:A review[J]. Chinese Journal of Mechanical Engineering,2021,34(1):133. [64] KARAMAN S,FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research,2011,30(7):846-894. [65] HUANG X,MCGILL S G,WILLIAMS B C,et al. Uncertainty-aware driver trajectory prediction at urban intersections[C]//2019 International Conference on Robotics and Automation (ICRA),Montreal,QC,Canada,2019:9718-9724. [66] JEONG Y,KIM S,YI K. Surround vehicle motion prediction using lstm-rnn for motion planning of autonomous vehicles at multi-lane turn intersections[J]. IEEE Open Journal of Intelligent Transportation Systems,2020,1:2-14. [67] HULT R,ZANON M,GROS S,et al. Optimal coordination of automated vehicles at intersections:Theory and experiments[J]. IEEE Transactions on Control Systems Technology,2019,27(6):2510-2525. [68] TRAM T,JANSSON A,GRÖNBERG R,et al. Learning negotiating behavior between cars in intersections using deep q-learning[C]//201821st International Conference on Intelligent Transportation Systems (ITSC),Maui,HI,USA,2018:3169-3174. [69] BOUTON M,COSGUN A,KOCHENDERFER M J. Belief state planning for autonomously navigating urban intersections[C]//2017 IEEE Intelligent Vehicles Symposium (IV),Los Angeles,CA,USA,2017:825-830. [70] ZHAN W,SUN L,WANG D,et al. Interaction dataset:An international,adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps[J/OL]. ArXiv,[2019-09-30]. https://doi.org/10.48550/arXiv.1910.03088. [71] BOCK J,KRAJEWSKI R,MOERS T,et al. The ind dataset:A drone dataset of naturalistic road user trajectories at german intersections[C]//2020 IEEE Intelligent Vehicles Symposium (IV),Las Vegas,NV,USA,2020:1929-1934. [72] LI S,SHU K,ZHOU Y,et al. Cooperative critical turning point-based decision-making and planning for cavh intersection management system[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(8):11062-11072. [73] SHU K,YU H,CHEN X,et al. Autonomous driving at intersections:A behavior-oriented critical-turning-point approach for decision making[J]. IEEE/ASME Transactions on Mechatronics,2022,27(1):234-244. [74] YU H,JIANG R,HE Z,et al. Automated vehicle-involved traffic flow studies:A survey of assumptions,models,speculations,and perspectives[J]. Transportation Research Part C:Emerging Technologies,2021,127:103101. [75] ZHENG Z. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B:Methodological,2014,60:16-32. [76] TOLEDO T,CHOUDHURY C F,BEN-AKIVA M E. Lane-changing model with explicit target lane choice[J]. Transportation Research Record,2005,1934(1):157-165. [77] ALI Y,ZHENG Z,HAQUE M M,et al. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment[J]. Transportation Research Part C:Emerging Technologies,2019,106:220-242. [78] ZHANG X,SUN J,QI X,et al. Simultaneous modeling of car-following and lane-changing behaviors using deep learning[J]. Transportation Research Part C:Emerging Technologies,2019,104:287-304. [79] KUDERER M,GULATI S,BURGARD W. Learning driving styles for autonomous vehicles from demonstration[C]//2015 IEEE International Conference on Robotics and Automation (ICRA),Seattle,WA,USA,2015:2641-2646. [80] CHU D,DENG Z,HE Y,et al. Curve speed model for driver assistance based on driving style classification[J]. IET Intelligent Transport Systems,2017,11(8):501-510. [81] ZHU X,HU W,DENG Z,et al. Interaction-aware cut-in trajectory prediction and risk assessment in mixed traffic[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(10):1752-1762. [82] DENG Z,HU W,YANG Y,et al. Lane change decision-making with active interactions in dense highway traffic:A bayesian game approach[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC),Macau,China,2022:3290-3297. [83] 胡文,邓泽健,张邦基,等. 密集交通场景下无人驾驶重卡换道决策规划方法[J]. 机械工程学报,2023,59(12):332-342. HU Wen,DENG Zejian,ZHANG Bangji,et al. Decision-making and trajectory planning for autonomous heavy truck in dense traffic[J]. Journal of Mechanical Engineering,2023,59(12):332-342. [84] DENG Z,CHU D,WU C,et al. A probabilistic model for driving-style-recognition-enabled driver steering behaviors[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52(3):1838-1851. [85] HU W,DENG Z,CAO D,et al. Probabilistic lane-change decision-making and planning for autonomous heavy vehicles[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(12):2161-2173. [86] SINGH A S P,NISHIHARA O. Trajectory tracking and integrated chassis control for obstacle avoidance with minimum jerk[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(5):4625-4641. [87] ZHANG Z,ZHANG L,WANG C,et al. Integrated decision making and motion control for autonomous emergency avoidance based on driving primitives transition[J]. IEEE Transactions on Vehicular Technology,2023,72(4):4207-4221. [88] WANG C,YU H,ZHANG L,et al. Post-impact stability control for four-wheel- independently-actuated electric vehicles[C]//Chinese Automation Congress,Shanghai,China,2020:7197-7202. [89] CAIRD J K,LEES M,EDWARDS C. The naturalistic driver model:A review of distraction,impairment and emergency factors[R]. Berkeley,US:Institute of Transportation Studies,UC Berkeley,2005. [90] NHTSA. Traffic safey facts annual report 2019[R]. Washington,DC:U.S. Department of Transportation,2019. [91] MO H,MENG Y,WANG F Y,et al. Interval type-2 fuzzy hierarchical adaptive cruise following-control for intelligent vehicles[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(9):1658-1672. [92] HÄUSSLER A,SCHÄFFLER R,GEORGI A,et al. Networking of airbag and esp for prevention of further collisions[J]. ATZ Worldwide,2012,114(9):22-26. [93] WANG C,WANG Z,ZHANG Z,et al. Integrated post-impact planning and active safety control for autonomous vehicles[J]. IEEE Transactions on Intelligent Vehicles,2023,8(3):2062-2076. [94] WANG C,WANG Z,ZHANG L,et al. A vehicle rollover evaluation system based on enabling state and parameter estimation[J]. IEEE Transactions on Industrial Informatics,2021,17(6):4003-4013. [95] ROTH M,STAPEL J,HAPPEE R,et al. Driver and pedestrian mutual awareness for path prediction and collision risk estimation[J]. IEEE Transactions on Intelligent Vehicles,2022,7(4):896-907. [96] XING Y,LÜ C,CAO D,et al. Toward human-vehicle collaboration:Review and perspectives on human-centered collaborative automated driving[J]. Transportation Research Part C:Emerging Technologies,2021,128:103199. [97] PRÉDHUMEAU M,SPALANZANI A,DUGDALE J. Pedestrian behavior in shared spaces with autonomous vehicles:An integrated framework and review[J]. IEEE Transactions on Intelligent Vehicles,2023,8(1):438-457. [98] WINNER H,LEMMER K,FORM T,et al. Pegasus—first steps for the safe introduction of automated driving[C]//Road Vehicle Automation 5,Cham,2019:185-195. [99] LI W,CUI Y,MA Y,et al. A spontaneous driver emotion facial expression (defe) dataset for intelligent vehicles:Emotions triggered by video-audio clips in driving scenarios[J]. IEEE Transactions on Affective Computing,2023,14(1):747-760. [100] LI W,TAN R,XING Y,et al. A multimodal psychological,physiological and behavioural dataset for human emotions in driving tasks[J]. Scientific Data,2022,9(1):481. [101] LI W,ZENG G,ZHANG J,et al. Cogemonet:A cognitive-feature-augmented driver emotion recognition model for smart cockpit[J]. IEEE Transactions on Computational Social Systems,2022,9(3):667-678. [102] 李文博,刘羽婧,张峻铖,等. 驾驶员情绪-驾驶风险机理分析[J]. 机械工程学报,2022,58(22):379-394. LI Wenbo,LIU Yujing,ZHANG Juncheng,et al. Analysis of the influence mechanism of driver’s emotion on driving risk[J]. Journal of Mechanical Engineering,2022,58(22):379-394. [103] LI W,XUE J,TAN R,et al. Global-local-feature-fused driver speech emotion detection for intelligent cockpit in automated driving[J]. IEEE Transactions on Intelligent Vehicles,2023,8(4):2684-2697. [104] LI W,ZHANG B,WANG P,et al. Visual-attribute-based emotion regulation of angry driving behaviors[J]. IEEE Intelligent Transportation Systems Magazine,2022,14(3):10-28. [105] SO R H Y,HO A,LO W T. A metric to quantify virtual scene movement for the study of cybersickness:Definition,implementation,and verification[J]. Presence,2001,10(2):193-215. [106] TAN R,LI W,HU F,et al. Motion sickness detection for intelligent vehicles:A wearable-device-based approach[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC),Macau,China,2022:4355-4362. [107] DEO N,TRIVEDI M M. Looking at the driver/rider in autonomous vehicles to predict take-over readiness[J]. IEEE Transactions on Intelligent Vehicles,2020,5(1):41-52. [108] HESTER M,LEE K,DYRE B P. “Driver take over”:A preliminary exploration of driver trust and performance in autonomous vehicles[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,2017,61(1):1969-1973. [109] HERGETH S,LORENZ L,KREMS J F,et al. Effects of take-over requests and cultural background on automation trust in highly automated driving[C]//Driving Assesment Conference,Salt Lake City,Utah,USA,2015,8:331-337. [110] NAUJOKS F,BEFELEIN D,WIEDEMANN K,et al. A review of non-driving-related tasks used in studies on automated driving[C]//Advances in Human Aspects of Transportation,Cham,2018:525-537. [111] BANKS V A,STANTON N A. Analysis of driver roles:Modelling the changing role of the driver in automated driving systems using east[J]. Theoretical Issues in Ergonomics Science,2019,20(3):284-300. [112] HEIKOOP D D,DE WINTER J C F,VAN AREM B,et al. Psychological constructs in driving automation:A consensus model and critical comment on construct proliferation[J]. Theoretical Issues in Ergonomics Science,2016,17(3):284-303. [113] GOLD C,HAPPEE R,BENGLER K. Modeling take-over performance in level 3 conditionally automated vehicles[J]. Accident Analysis & Prevention,2018,116:3-13. [114] WEAVER B W,DELUCIA P R. A systematic review and meta-analysis of takeover performance during conditionally automated driving[J]. Human Factors,2020,64(7):1227-1260. [115] LV C,WANG H,CAO D,et al. A novel control framework of haptic take-over system for automated vehicles[C]//2018 IEEE Intelligent Vehicles Symposium (IV),Changshu,China,2018:1596-1601. [116] LV C,WANG H,CAO D,et al. Characterization of driver neuromuscular dynamics for human–automation collaboration design of automated vehicles[J]. IEEE/ASME Transactions on Mechatronics,2018,23(6):2558-2567. [117] KÖRBER M,GOLD C,LECHNER D,et al. The influence of age on the take-over of vehicle control in highly automated driving[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2016,39:19-32. [118] WÖRLE J,METZ B,OTHERSEN I,et al. Sleep in highly automated driving:Takeover performance after waking up[J]. Accident Analysis & Prevention,2020,144:105617. [119] GASNE C,PAIRE-FICOUT L,BORDEL S,et al. Takeover performance of older drivers in automated driving:A review[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2022,87:347-364. [120] RICHARDSON N T,FLOHR L,MICHEL B. Takeover requests in highly automated truck driving:How do the amount and type of additional information influence the driver–automation interaction?[J]. Multimodal Technologies and Interaction,2018,2(4):68. [121] LI Q,HOU L,WANG Z,et al. Drivers’ visual-distracted take-over performance model and its application on adaptive adjustment of time budget[J]. Accident Analysis & Prevention,2021,154:106099. [122] LI Y,LÜ C,XUE J. A novel predictive haptic control interface for automation-to-human takeover of automated vehicles[C]//2019 IEEE Intelligent Vehicles Symposium (IV),Paris,France,2019:994-999. [123] LÜ C,LI Y,XING Y,et al. Human–machine collaboration for automated driving using an intelligent two-phase haptic interface[J]. Advanced Intelligent Systems,2021,3(4):2000229. [124] NAUJOKS F,PURUCKER C,WIEDEMANN K,et al. Noncritical state transitions during conditionally automated driving on german freeways:Effects of non–driving related tasks on takeover time and takeover quality[J]. Human Factors,2019,61(4):596-613. [125] NAUJOKS F,WIEDEMANN K,SCHÖMIG N,et al. Towards guidelines and verification methods for automated vehicle hmis[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2019,60:121-136. [126] OMEIZA D,WEBB H,JIROTKA M,et al. Explanations in autonomous driving:A survey[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(8):10142-10162. [127] OLAVERRI-MONREAL C. Promoting trust in self-driving vehicles[J]. Nature Electronics,2020,3(6):292-294. [128] RYAN M. The future of transportation:Ethical,legal,social and economic impacts of self-driving vehicles in the year 2025[J]. Science and Engineering Ethics,2020,26(3):1185-1208. |
[1] | 褚端峰, 刘鸿祥, 高博麟, 王金湘, 殷国栋. 车辆队列预测巡航控制研究综述[J]. 机械工程学报, 2024, 60(18): 218-246. |
[2] | 隗寒冰, 吴化腾, 徐进. 考虑驾驶员NMS特征的自动驾驶汽车人机共驾鲁棒横向控制[J]. 机械工程学报, 2024, 60(16): 280-290. |
[3] | 戢杨杰, 张馨雨, 杨紫茹, 周上航, 黄岩军, 曹建永, 熊璐, 余卓平. 多智能网联汽车轨迹规划:现状与展望[J]. 机械工程学报, 2024, 60(10): 129-146. |
[4] | 高镇海, 于桐, 孙天骏. 考虑社会性行为的自动驾驶运动规划研究综述[J]. 机械工程学报, 2024, 60(10): 112-128. |
[5] | 梁凯冲, 赵治国, 颜丹姝, 赵坤. 基于动态运动基元的车辆高速公路换道轨迹规划[J]. 机械工程学报, 2024, 60(10): 192-206. |
[6] | 周洪龙, 裴晓飞, 刘一平, 赵柯帆. 面向动态不确定场景的自动驾驶车辆时空耦合分层轨迹规划研究[J]. 机械工程学报, 2024, 60(10): 222-234. |
[7] | 曾迪, 郑玲, 李以农, 杨显通. 自动驾驶奖励函数贝叶斯逆强化学习方法[J]. 机械工程学报, 2024, 60(10): 245-260. |
[8] | 聂士达, 刘辉, 廖志昊, 谢雨佳, 项昌乐, 韩立金, 林思豪. 考虑复杂地形的越野环境无人车辆路径规划研究[J]. 机械工程学报, 2024, 60(10): 261-272. |
[9] | 杨硕, 李时珍, 赵中原, 黄小鹏, 黄岩军. 基于时序差分学习模型预测控制的一体化自动驾驶换道策略[J]. 机械工程学报, 2024, 60(10): 329-338. |
[10] | 张志勇, 黄大洋, 黄彩霞, 胡林, 杜荣华. TD3算法改进与自动驾驶汽车并道策略学习[J]. 机械工程学报, 2023, 59(8): 224-234. |
[11] | 黄晶, 陈紫琳, 杨梦婷, 彭晓燕. 自适应自动驾驶等级的驾驶人状态监测模型研究[J]. 机械工程学报, 2023, 59(2): 187-198. |
[12] | 高镇海, 于桐, 孙天骏, 唐明弘, 高菲, 赵睿. 面向纵向自动驾驶的仿人驱动控制网络模型[J]. 机械工程学报, 2023, 59(18): 251-262. |
[13] | 林歆悠, 叶卓明, 周斌豪. 基于DQN强化学习的自动驾驶转向控制策略[J]. 机械工程学报, 2023, 59(16): 315-324. |
[14] | 徐灿, 赵万忠, 李琳, 张瑞军, 王春燕, 陈锋. 考虑交互博弈的无信号交叉路口自动驾驶车辆决策规划研究[J]. 机械工程学报, 2023, 59(14): 202-212. |
[15] | 胡文, 邓泽健, 张邦基, 曹东璞, 杨彦鼎, 曹恺, 李深. 密集交通场景下无人驾驶重卡换道决策规划方法[J]. 机械工程学报, 2023, 59(12): 332-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||