机械工程学报 ›› 2024, Vol. 60 ›› Issue (18): 218-246.doi: 10.3901/JME.2024.18.218
褚端峰1, 刘鸿祥1, 高博麟2, 王金湘3, 殷国栋3
收稿日期:
2023-10-12
修回日期:
2024-05-15
出版日期:
2024-09-20
发布日期:
2024-11-15
作者简介:
褚端峰,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为自动驾驶、机器学习等。E-mail:chudf@whut.edu.cn基金资助:
CHU Duanfeng1, LIU Hongxiang1, GAO Bolin2, WANG Jinxiang3, YIN Guodong3
Received:
2023-10-12
Revised:
2024-05-15
Online:
2024-09-20
Published:
2024-11-15
摘要: 车辆队列巡航控制主要依据范围有限的交通环境信息,但环境的高度不确定性会影响车辆建模精度与控制效果。预测巡航控制作为巡航控制的一种演进,已成为当前的研究热点。为全面分析车辆队列预测巡航控制的研究进展,从交通环境信息预测、队列运动行为决策、队内车辆轨迹规划、车辆轨迹跟踪控制等4个方面进行概述。首先,介绍车辆队列对交通环境信息的预测研究进展,包括采用车路协同获取前方道路地理、交通等信息,以及通过车载传感器预测周边环境车辆运动状态,重点介绍基于深度学习的轨迹预测方法研究现状及发展趋势;其次,介绍车辆队列协同行为决策问题的研究进展,详细阐述博弈论与机器学习在协同行为决策领域的重要作用,指出模型与数据混合优化的行为决策发展趋势;再次,针对车辆协同轨迹规划问题,从模型驱动与数据驱动2个角度,分别对当前研究进行梳理,并说明强化学习在协同轨迹规划方面具备的优势;然后,从预测巡航控制、车辆跟踪控制等2个方面,分别阐述车辆轨迹跟踪控制问题,并指出基于数据和模型联合驱动的车辆跟踪控制方法具有较大应用潜力;最后,总结车辆队列预测巡航控制的研究现状与不足,并对该领域的未来发展趋势进行展望,为其后续应用提供新思路。
中图分类号:
褚端峰, 刘鸿祥, 高博麟, 王金湘, 殷国栋. 车辆队列预测巡航控制研究综述[J]. 机械工程学报, 2024, 60(18): 218-246.
CHU Duanfeng, LIU Hongxiang, GAO Bolin, WANG Jinxiang, YIN Guodong. Survey of Predictive Cruise Control for Vehicle Platooning[J]. Journal of Mechanical Engineering, 2024, 60(18): 218-246.
[1] BIAN Yonggang,ZHENG Yang,REN Wei,et al. Reducing time headway for platooning of connected vehicles via V2V communication[J]. Transportation Research Part C:Emerging Technologies,2019,102:87-105. [2] HIDALGO C,LATTARULO R,FLORES C,et al. Platoon merging approach based on hybrid trajectory planning and CACC strategies[J]. Sensors,2021,21(8):2626. [3] SHLADOVER S E. Path at 20-history and major milestones[J]. IEEE Transactions on Intelligent Transportation Systems,2007,8(4):584-592. [4] COELINGH E,SOLYOM S. All aboard the robotic road train[J]. IEEE Spectrum,2012,49(11):34-39. [5] TSUGAWA S,KATO S,AOKI K. An automated truck platoon for energy saving[C]// 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2011:4109-4114. [6] KIANFAR R,AUGUSTO B,EBADIGHAJARI A,et al. Design and experimental validation of cooperative driving system in grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems,2012,13(3):994-1007. [7] NOWAKOWSKI C,SHLADOVER S E,LU Xiaoyun,et al. Cooperative adaptive cruise control (CACC) for truck platooning:Operational concept alternatives[R]. Research Reports No. UCB-ITS-PRR-2015-05:UC Berkeley:California Partners for Advanced Transportation Technology,2015. [8] MILANÉS V,SHLADOVER S E,SPRING J,et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(1):296-305. [9] DEY K C,YAN Li,WANG Xujie,et al. A review of communication,driver characteristics,and controls aspects of cooperative adaptive cruise control (CACC)[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(2):491-509. [10] MILANÉS V,SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C:Emerging Technologies,2014,48:285-300. [11] JIA Dongyao,CHEN Haibo,ZHENG Zuduo,et al. An enhanced predictive cruise control system design with data-driven traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(7):8170-8183. [12] ASADI B,VAHIDI A. Predictive cruise control:utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE Transactions on Control Systems Technology,2011,19(3):707-714. [13] TURRI V,BESSELINK B,JOHANSSON K H. Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning[J]. IEEE Transactions on Control Systems Technology,2017,25(1):12-28. [14] GAO Weinan,ODEKUNLE A,CHEN Yunfeng,et al. Predictive cruise control of connected and autonomous vehicles via reinforcement learning[J]. IET Control Theory & Applications,2019,13(17):2849-2855. [15] ZHAI Chunjie,LUO Fei,LIU Yonggui. Cooperative look-ahead control of vehicle platoon for maximizing fuel efficiency under system constraints[J]. IEEE Access,2018,6:37700-37714. [16] NAIK G,CHOUDHURY B,PARK J M. IEEE 802.11bd & 5G NR V2X:Evolution of radio access technologies for V2X communications[J]. IEEE Access,2019,7:70169-70184. [17] ZHAI Chunjie,LIU Yonggui,LUO Fei. A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(5):1883-1896. [18] 李克强,常雪阳,李家文,等. 智能网联汽车云控系统及其实现[J]. 汽车工程,2020,42(12):1595-1605. LI Keqiang,CHANG Xueyang,LI Jiawen,et al. Cloud control system for intelligent and connected vehicles and its application[J]. Automotive Engineering,2020,42(12):1595-1605. [19] XIE Guotao,GAO Hongbo,QIAN Lijun,et al. Vehicle trajectory prediction by integrating physics-and maneuver-based approaches using interactive multiple models[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5999-6008. [20] HOUENOU A,BONNIFAIT P,CHERFAOUI V,et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2013:4363-4369. [21] LEFÈVRE S V D,LAUGIER C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal,2014,1(1):1-14. [22] RAJAMANI R. Vehicle dynamics and control[M]. Borlin:Springer Science & Business Media,2011. [23] KAEMPCHEN N,SCHIELE B,DIETMAYER K. Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios[J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(4):678-687. [24] BRÄNNSTRÖM M,COELINGH E,SJÖBERG J. Model-based threat assessment for avoiding arbitrary vehicle collisions[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):658-669. [25] SCHUBERT R R E,WANIELIK G. Comparison and evalution of advanced motion models for vehicle tracking[C]// 200811th International Conference on Information Fusion. IEEE,2008:1-6. [26] HILLENBRAND J,SPIEKER A M,KROSCHEL K. A multilevel collision mitigation approach—Its situation assessment,decision making,and performance tradeoffs[J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(4):528-540. [27] BATZ T,WATSON K,BEYERER J. Recognition of dangerous situations within a cooperative group of vehicles[C]// 2009 IEEE Intelligent Vehicles Symposium. IEEE,2009:907-912. [28] LEON F,GAVRILESCU M. A review of tracking and trajectory prediction methods for autonomous driving[J]. Mathematics,2021,9(6):660. [29] BAHRAM M,HUBMANN C,LAWITZKY A,et al. A combined model-and learning-based framework for interaction-aware maneuver prediction[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(6):1538-1550. [30] CHEN Badong,DANG Lujuan,GU Yuantao,et al. Minimum error entropy Kalman filter[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,51(9):5819-5829. [31] MOFFAT E,MELNITCHOUK W,ROGERS T C,et al. Simultaneous monte carlo analysis of parton densities and fragmentation functions[J]. Physical Review D,2021,104(1):016015. [32] HU Weiming,XIAO Xuejuan,FU Zhouyu,et al. A system for learning statistical motion patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9):1450-1464. [33] ATEV S,MILLER G,PAPANIKOLOPOULOS N P. Clustering of vehicle trajectories[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):647-657. [34] BUZAN D,SCLAROFF S,KOLLIOS G. Extraction and clustering of motion trajectories in video[C]// Proceedings of the 17th International Conference on Pattern Recognition,2004. ICPR 2004. IEEE,2004:521-524. [35] HERMES C,WOHLER C,SCHENK K,et al. Long-term vehicle motion prediction[C]// 2009 IEEE Intelligent Vehicles Symposium. IEEE,2010:652-657. [36] LAUGIER C,PAROMTCHIK I E,PERROLLAZ M,et al. Probabilistic analysis of dynamic scenes and collision risk assessment to improve driving safety[J]. IEEE Intelligent Transportation Systems Magazine,2011,3(4):4-19. [37] LIU A,PENTLAND A. Towards real-time recognition of driver intentions[C]// Proceedings of Conference on Intelligent Transportation Systems. IEEE,1997:236-241. [38] PENTLAND A,LIU A. Modeling and prediction of human behavior[J]. Neural Computation,1999,11(1):229-242. [39] LIU Zhiqiang,PENG Mancai,SUN Yuechen. Estimation of driver lane change intention based on the LSTM and dempster-shafer evidence theory[J]. Journal of advanced transportat [40] LETHAUS F,BAUMANN M R K,KÖSTER F,et al. A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data[J]. Neurocomputing,2013,121:108-130. [41] GAO Jun,MURPHEY Y L,ZHU Honghui. Multivariate time series prediction of lane changing behavior using deep neural network[J]. Applied Intelligence,2018,48(10):3523-3537. [42] WANG Xiaoyuan,GUO Yongqing,BAI Chenglin,et al. Driver’s intention identification with the involvement of emotional factors in two-lane roads[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(11):6866-6874. [43] DOSHI A,MORRIS B,TRIVEDI M. On-road prediction of driver's intent with multimodal sensory cues[J]. IEEE Pervasive Computing,2011,10(3):22-34. [44] XING Yang,LÜ Chen,WANG Huaji,et al. Driver lane change intention inference for intelligent vehicles:framework,survey,and challenges[J]. IEEE Transactions on Vehicular Technology,2019,68(5):4377-4390. [45] 付锐,张海伦,刘文晓,等. 驾驶人意图识别综述[J]. 长安大学学报(自然科学版),2022(1):1-28. FU Rui,ZHANG Hailun,LIU Wenxiao,et al. Review on driver intention recognition[J]. Journal of Chang’an University (Natural Science Edition),2022(1):1-28. [46] AOUDE G S,LUDERS B D,LEE K K H,et al. Threat assessment design for driver assistance system at intersections[C]// 13th International Ieee Conference on Intelligent Transportation Systems. IEEE,,2010:1855-1862. [47] XIE Guotao,GAO Hongbo,HUANG Bin,et al. A driving behavior awareness model based on a dynamic bayesian network and distributed genetic algorithm[J]. International Journal of Computational Intelligence Systems,2018,11(1):469-482. [48] TANG Jinjun,LIU Fang,ZHANG Wenhui,et al. Lane-changes prediction based on adaptive fuzzy neural network[J]. Expert Systems with Applications,2018,91:452-463. [49] ALAHI A,GOEL K,RAMANATHAN V,et al. Social lstm:human trajectory prediction in crowded spaces[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:961-971. [50] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [51] KIM B D,KANG C M,KIM J,et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]// 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE,2017:399-404. [52] DEO N,TRIVEDI M M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms[C]// 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,2018:1179-1184. [53] DEO N,TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:1468-1476. [54] CHANDRA R,BHATTACHARYA U,BERA A,et al. TraPHic:Trajectory prediction in dense and heterogeneous traffic using weighted interactions[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8483-8492. [55] XIE G,SHANGGUAN A Q,FEI R,et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J]. Science China-Information Sciences,2020,63(11):1-21. [56] LI Runmei,ZHONG Zherui,CHAI Jin,et al. Autonomous vehicle trajectory combined prediction model based on CC-LSTM[J]. International Journal of Fuzzy Systems,2022,24(8):3798-3811. [57] XIN Long,WANG Pin,CHAN Chingyao,et al. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual lstm networks[C]// 201821st International Conference on Intelligent Transportation Systems (ITSC). IEEE,2018:1441-1446. [58] 季学武,费聪,何祥坤,等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报,2019,32(6):34-42. JI Xuewu,FEI Cong,HE Xiangkun,et al. Intention recognition and trajectory prediction for vehicle using LSTM network[J]. China Journal of Highway and Transport,2019,32(6):34-42. [59] CHOI D,YIM J,BAEK M,et al. Machine learning-based vehicle trajectory prediction using v2v communications and on-board sensors[J]. Electronics,2021,10(4):420. [60] HUANG M Y,ZHU M G,XIAO Y P,et al. Bayonet-corpus:A trajectory prediction method based on bayonet context and bidirectional GRU[J]. Digital Communications and Networks,2021,7(1):72-81. [61] ZHI Y S,BAO Z P,ZHANG S M,et al. BiGRU based online multi-modal driving maneuvers and trajectory prediction[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2021,235(14):3431-3441. [62] SHENG Z H,XU Y M,XUE S B,et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23:17654-17665. [63] MESSAOUD K,DEO N,TRIVEDI M M,et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation[C]// 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE,2021:165-170. [64] LAI Weicheng,XIA Zixiang,LIN H S,et al. Trajectory prediction in heterogeneous environment via attended ecology embedding[C]// Proceedings of the 28th ACM International Conference on Multimedia,2020:202-210. [65] 田彦涛,黄兴,卢辉遒,等. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版),2022,53(5):1474-1480. TIAN Yantao,HUANG Xing,LU Huiqiu,et al. Vehicle multi-modal maneuvers and trajectory prediction based on attention mechanism with deep interaction[J]. Journal of Jilin University (Engineering and Technology Edition),2023,53(5):1474-1480. [66] YE Luyao,WANG Zezhong,CHEN Xinhong,et al. GSAN:graph self-attention network for learning spatial-temporal interaction representation in autonomous driving[J]. IEEE Internet of Things Journal,2022,9(12):9190-9204. [67] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[J]. Advances in Neural Information Processing Systems,2017(30) :5998-6008. [68] CHEN Weihuang,WANG Fangfang,SUN Hongbin. S2TNet:spatio-temporal transformer networks for trajectory prediction in autonomous driving[C]// Asian Conference on Machine Learning. PMLR,2021:454-469. [69] LIU Yicheng,ZHANG Jinghuai,FANG Liangji,et al. Multimodal motion prediction with stacked transformers[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:7577-7586. [70] LI Xiaolong,XIA Jing,CHEN Xiaoyong,et al. SIT:A spatial interaction-aware transformer-based model for freeway trajectory prediction[J]. ISPRS International Journal of Geo-Information,2022,11(2):79. [71] GOODFELLOW I P-A J,MIRZA M,et al. Generative Adversarial Networks[J]. Communications of the Acm,2020,63(11):139-144. [72] ZHAO L,LIU Y F,AL-DUBAI AY,et al. A novel generation adversarial network-based vehicle trajectory prediction method for intelligent vehicular networks[J]. IEEE Internet of Things Journal,2021,8(3):2066-2077. [73] 温惠英,张伟罡,赵胜. 基于生成对抗网络的车辆换道轨迹预测模型[J]. 华南理工大学学报(自然科学版),2020,48(5):32-40. WEN Huiying,ZHANG Weigang,ZHAO Sheng. Vehicle lane-change trajectory prediction model based on generative adversarial networks[J]. Journal of South China University of Technology (Natural Science Edition) ,2020,48(5):32-40. [74] HSU C C,KANG L W,CHEN S Y,et al. Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications[J]. Multimedia Tools and Applications,2022,:1-18. [75] LI X,YING X,CHUAH M C. GRIP:Graph-based interaction-aware trajectory prediction[C]// 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE,2019:3960-3966. [76] LI Z G J,LU C,et al. Interactive behavior prediction for heterogeneous traffic participants in the urban road:A graph-neural-network-based multitask learning framework[J]. IEEE/ASME Transactions on Mechatronics,2021,26(3):1339-1349. [77] LI Xin,YING X,CHUAH M C. Grip++:enhanced graph-based interaction-aware trajectory prediction for autonomous driving[J]. arXiv preprint arXiv,2019,1907.07792. [78] AMIRLOO E,RASOULI A,LAKNER P,et al. LatentFormer:multi-agent transformer-based interaction modeling and trajectory prediction[J]. arXiv preprint arXiv,2022,2203.01880. [79] MO Xiaoyu,HUANG Zhiyu,XING Yang,et al. Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(7):9554-9567. [80] 侯廉. 面向自动驾驶应用的周车轨迹群体交互式预测[D]. 北京:清华大学,2019. HOU Lian. Distributed and interactive prediction of future trajectories of surrounding vehicles for autonomous driving[D]. Beijing:Tsinghua University,2019. [81] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik,1959,1(1):269-271. [82] LI Yongbo,SOLEIMANI H,ZOHAL M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives[J]. Journal of Cleaner Production,2019,227:1161-1172. [83] 张新艳,邹亚圣. 基于改进A*算法的自动导引车无碰撞路径规划[J]. 系统工程理论与实践,2021,41(1):240-246. ZHANG Xinyan,ZOU Yasheng. Collision-free path planning for automated guided vehicles based on improved A* algorithm[J]. Systems Engineering-Theory & Practice,2021,41(1):240-246. [84] MU Chaoxu,NI Zhen,SUN Changyin,et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J]. IEEE Transactions on Neural Networks and Learning Systems,2017,28(3):584-598. |
[1] | 张赛凡, 李博, 轩福贞. 激光选区熔化过程声发射信号的降噪与分类预测方法[J]. 机械工程学报, 2024, 60(6): 163-176. |
[2] | 刘建琴, 胡桂菘, 乔金丽, 郭晓. 基于双路神经网络的TBM实时性能预测研究[J]. 机械工程学报, 2024, 60(16): 43-53. |
[3] | 隗寒冰, 吴化腾, 徐进. 考虑驾驶员NMS特征的自动驾驶汽车人机共驾鲁棒横向控制[J]. 机械工程学报, 2024, 60(16): 280-290. |
[4] | 高镇海, 于桐, 孙天骏. 考虑社会性行为的自动驾驶运动规划研究综述[J]. 机械工程学报, 2024, 60(10): 112-128. |
[5] | 戢杨杰, 张馨雨, 杨紫茹, 周上航, 黄岩军, 曹建永, 熊璐, 余卓平. 多智能网联汽车轨迹规划:现状与展望[J]. 机械工程学报, 2024, 60(10): 129-146. |
[6] | 梁凯冲, 赵治国, 颜丹姝, 赵坤. 基于动态运动基元的车辆高速公路换道轨迹规划[J]. 机械工程学报, 2024, 60(10): 192-206. |
[7] | 周洪龙, 裴晓飞, 刘一平, 赵柯帆. 面向动态不确定场景的自动驾驶车辆时空耦合分层轨迹规划研究[J]. 机械工程学报, 2024, 60(10): 222-234. |
[8] | 曾迪, 郑玲, 李以农, 杨显通. 自动驾驶奖励函数贝叶斯逆强化学习方法[J]. 机械工程学报, 2024, 60(10): 245-260. |
[9] | 聂士达, 刘辉, 廖志昊, 谢雨佳, 项昌乐, 韩立金, 林思豪. 考虑复杂地形的越野环境无人车辆路径规划研究[J]. 机械工程学报, 2024, 60(10): 261-272. |
[10] | 杨硕, 李时珍, 赵中原, 黄小鹏, 黄岩军. 基于时序差分学习模型预测控制的一体化自动驾驶换道策略[J]. 机械工程学报, 2024, 60(10): 329-338. |
[11] | 张志勇, 黄大洋, 黄彩霞, 胡林, 杜荣华. TD3算法改进与自动驾驶汽车并道策略学习[J]. 机械工程学报, 2023, 59(8): 224-234. |
[12] | 何洪文, 王浩宇, 王勇, 李双歧. 基于实车运行数据的锂离子电池健康状态估计[J]. 机械工程学报, 2023, 59(22): 46-58. |
[13] | 张墅野, 段晓康, 罗克宇, 许孙武, 张志昊, 陈捷狮, 何鹏. 基于机器学习电子封装互连材料研究现状[J]. 机械工程学报, 2023, 59(22): 222-233. |
[14] | 王聪, 胡文, 李文博, 邢阳, 陈宏昌, 曹东璞. 社会认知自动驾驶[J]. 机械工程学报, 2023, 59(20): 304-324. |
[15] | 黄晶, 陈紫琳, 杨梦婷, 彭晓燕. 自适应自动驾驶等级的驾驶人状态监测模型研究[J]. 机械工程学报, 2023, 59(2): 187-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||