• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (2): 187-198.doi: 10.3901/JME.2023.02.187

• 运载工程 • 上一篇    下一篇

扫码分享

自适应自动驾驶等级的驾驶人状态监测模型研究

黄晶1, 陈紫琳1, 杨梦婷2, 彭晓燕1   

  1. 1. 湖南大学汽车车身先进设计制造国家重点实验室 长沙 410082;
    2. 襄阳达安汽车检测中心有限公司 襄阳 441004
  • 收稿日期:2021-12-19 修回日期:2022-10-27 发布日期:2023-03-30
  • 作者简介:黄晶,女,1980年出生,博士,副教授,博士研究生导师。主要研究方向为车辆与交通安全、驾驶行为、损伤生物力学。E-mail:huangjing926@hnu.edu.cn;陈紫琳,女,1999年出生,硕士研究生。主要研究方向为驾驶行为。E-mail:826526383@qq.com;杨梦婷,女,1996年出生,硕士研究生。主要研究方向为驾驶行为。E-mail:yangmengting@nast.com.cn;彭晓燕,女,1965年出生,博士,教授,博士研究生导师。主要研究方向为复杂系统计算机控制,汽车电子与控制。E-mail:xiaoyan_p@126.com
  • 基金资助:
    国家自然科学基金(52175088,51775178)、湖南省自然科学基金(2020JJ4191)和湖南省重点研发(2020SK2099)资助项目。

Research on Driving Automation Level-adaptive Driver Condition Monitoring Models

HUANG Jing1, CHEN Zilin1, YANG Mengting2, PENG Xiaoyan1   

  1. 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082;
    2. Xiangyang Daan Automobile Test Center, Xiangyang 441004
  • Received:2021-12-19 Revised:2022-10-27 Published:2023-03-30

摘要: 自动驾驶等级的逐级提升意味着驾驶执行权从驾驶人向车辆自动控制系统逐渐转移,驾驶人所承担的责任也随之发生变化。大量研究表明,自动驾驶车辆驾驶人的注意力跨度与行驶安全性密切相关,且不同等级自动驾驶所要求的驾驶人状态阈值存在差异。提出一种融合长短记忆(Long short term memory,LSTM)网络和驾驶人状态判别机制的驾驶人负荷状态预测模型(long short term memory network driver state prediction model,LSTM-DSDM),实现驾驶人负荷状态的预测及其状态转变阶段的识别,并基于不同自动驾驶等级下驾驶人的任务要求,提出了“低等级识别,高等级预测”的驾驶人负荷状态监测策略。试验结果表明本研究搭建的驾驶员负荷状态预测模型在低自动驾驶等级情况下的负荷识别率可达90%以上;在高自动驾驶等级情况下实现可靠的负荷预测和驾驶人负荷状态过渡阶段的辨识,有效应对不同自动驾驶等级驾驶人负荷状态的监测需求。

关键词: 自动驾驶等级, 驾驶人能力需求, 驾驶人状态监测, 负荷过渡, LSTM

Abstract: The gradual increase in the level of automatic driving means that the power of driving execution is gradually transferred from the driver to the vehicle system, and the responsibilities of the driver also change accordingly. A large number of studies have shown that the attention span of the driver of an autonomous vehicle is closely related to driving safety, and there are differences in the driver state thresholds required for different levels of autonomous driving. This research proposes an long short term memory(LSTM) network driver state prediction model(LSTM-DSDM) that integrates the driver state discrimination mechanism to realize the prediction of the driver's load state and the recognition of the state transition stage, and based on the task requirements of drivers under different levels of automatic driving, a driver's load status monitoring strategy of low-level recognition, high-level prediction is proposed. The experimental results show that the driver's load status monitoring strategy proposed in this study can effectively respond to the driver's load status monitoring needs of different autonomous driving levels. The driver's load state prediction model built in this study has a high recognition rate under the condition of low autopilot level, which can reach more than 90%; under the condition of high autopilot level, the prediction rate of the model can achieve the prediction effect to a certain extent, and it can also be used to study the transition phase of the driver's load state.

Key words: driving automation level, driver capability requirements, driver condition monitoring, load transition, long short term memory(LSTM)

中图分类号: