• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (16): 315-324.doi: 10.3901/JME.2023.16.315

• 运载工程 • 上一篇    下一篇

扫码分享

基于DQN强化学习的自动驾驶转向控制策略

林歆悠, 叶卓明, 周斌豪   

  1. 福州大学机械工程及自动化学院 福州 350002
  • 收稿日期:2022-07-30 修回日期:2022-11-12 出版日期:2023-08-20 发布日期:2023-11-15
  • 通讯作者: 林歆悠(通信作者),男,1981年出生,博士,副教授。主要研究方向为新能源电动汽车能量管理控制策略与自动驾驶车路协同控制。E-mail:linxinyoou@fzu.edu.cn。
  • 作者简介:叶卓明,男,1996年出生,主要研究方向为自动驾驶规划控制。E-mail:yipzom@163.com;周斌豪,男,1995年出生,主要研究方向为自动驾驶路径跟踪控制。E-mail:369728624@qq.com
  • 基金资助:
    国家自然科学基金(52272389);福建省自然科学基金(2020J01449);华东交通大学载运工具与装备教育部重点实验室开放课题(KLCF2022-08);安徽工程大学检测技术与节能装置安徽省重点实验室开放研究基金(JCKJ2021A04)资助项目。

DQN Reinforcement Learning-based Steering Control Strategy for Autonomous Driving

LIN Xinyou, YE Zhuoming, ZHOU Binhao   

  1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350002
  • Received:2022-07-30 Revised:2022-11-12 Online:2023-08-20 Published:2023-11-15

摘要: 为解决自动驾驶汽车的自主转向问题,大多研究主要基于模型预测控制(Modelpredictivecontrol,MPC)策略,而传统MPC策略需要被控对象精确的数学模型同时需要大量实时控制计算。为此,提出一种基于深度Q-Learning神经网络(Deep Q-Learning neural network,DQN)强化学习的转向控制策略,使自动驾驶汽车能够精准有效地进行路径跟踪,提高路径跟踪精度和稳定性。该策略基于DQN强化学习通过选取合适的学习率对智能体进行训练,使训练后的智能体能够自适应根据不同路况和车速得到最佳的前轮转角。仿真对比结果表明,与无约束的线性二次型调节器(Linear quadraticregulator,LQR)控制策略相比,基于DQN强化学习的控制策略的累计绝对横向位置偏差以及累计绝对横摆角度偏差都有较大的增加,但也在可接受的范围内,能有效提高路径跟踪的精度。最后的实车试验结果同样表明了所制定的控制策略的有效性。

关键词: 自动驾驶, 转向控制, 路径跟踪, 强化学习, 深度Q学习神经网络

Abstract: To solve the problem of autonomous steering of autonomous vehicles, most researches are mainly based on the model predictive control(MPC) strategy, while the traditional MPC strategy requires an accurate mathematical model of the controlled object and a lot of real-time control calculations. To this end, a steering control strategy based on deep Q-Learning neural network(DQN)reinforcement learning is proposed, which enables autonomous vehicles to track paths accurately and effectively, and improves the accuracy and stability of path tracking. The strategy is based on DQN reinforcement learning to train the agent by selecting an appropriate learning rate, so that the trained agent can adaptively obtain the best front wheel turning angle according to different road conditions and vehicle speeds. The simulation comparison results show that compared with the unconstrained linear quadratic regulator(LQR) control strategy, the cumulative absolute lateral position deviation and cumulative absolute yaw angle deviation of the control strategy based on DQN reinforcement learning have increased significantly. But it is also within an acceptable range, which can effectively improve the accuracy of path tracking. The final real vehicle test results also show the effectiveness of the proposed control strategy.

Key words: automatic driving, steering control, path tracking, reinforcement learning, deep Q-learning network

中图分类号: