[1] 初长祥,马文星. 工程机械液压与液力传动系统.液力卷[M]. 北京:化学工业出版社, 2015. CHU Changxiang, MA Wenxing. Hydraulic and hydraulic transmission system of construction machinery. Hydraulic volume[M]. Beijing:Chemical Industry Press, 2015. [2] 彭正虎,赵丽梅,吴怀超,等. 基于遗传算法的装载机发动机与液力变矩器匹配优化分析[J]. 机床与液压, 2017, 45(11):126-130. PENG Zhenghu, ZHAO Limei, WU Huaichao, et al. Optimization analysis of matching between loader engine and hydraulic torque converter based on genetic algorithm[J]. Machine Tool & Hydraulics, 2017, 45(11):126-130. [3] 王振宝,秦四成. 基于典型工况液力变矩器匹配性能的优化[J]. 中南大学学报(自然科学版), 2017, 48(2):331-336. WANG Zhenbao, QIN Sicheng. Optimization of matching performance of hydraulic torque converter based on typical working conditions[J]. Journal of Central South University (Natural Science Edition), 2017, 48(2):331-336. [4] 马惠臣,刘城,李娟,等. 液力变矩器通用特性及其匹配方法的研究[J]. 北京理工大学学报, 2021, 41(9):1-8. MA Huichen, LIU Cheng, LI Juan, et al. Research on the general characteristics of hydraulic torque converter and its matching method[J]. Journal of Beijing Institute of Technology, 2021, 41(9):1-8. [5] 刘树成,闫清东,邢庆坤. 车用大功率柴油机与液力变矩器动态匹配影响因素分析[J]. 兵工学报, 2016, 37(3):385-393. LIU Shucheng, YAN Qingdong, XING Qingkun. Analysis of influencing factors on dynamic matching of automotive high-power diesel engine and hydraulic torque converter[J]. Acta Armamentarius, 2016, 37(3):385-393. [6] 陈凯,吴光强. 基于遗传算法的液力变矩器与发动机匹配的多目标优化[J]. 汽车工程, 2014, 36(5):532-536. CHEN Kai, WU Guangqiang. Multi-objective optimization of torque converter and engine matching based on genetic algorithm[J]. Automotive Engineering, 2014, 36(5):532-536. [7] 徐礼超,侯学明. 基于典型工况的装载机发动机与液力变矩器匹配[J]. 农业工程学报, 2015, 31(7):80-84. XU Lichao, HOU Xueming. Matching of loader engine and hydraulic torque converter based on typical working conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7):80-84. [8] MA Wenxing, XU Wen, CAI Wei, et al. Variable-capacity matching of continuously variable-capacity double-impeller torque converter applied to a loader[J]. Advances in Mechanical Engineering, 2017, 9(2):1-11. [9] 张泽宇,惠记庄,卜正锋,等. 液力变矩器与发动机的功率匹配与转速感应控制[J]. 机械科学与技术, 2018, 37(1):55-62. ZHANG Zeyu, HUI Jizhuang, BU Zhengfeng, et al. Power matching and speed induction control of torque converter and engine[J]. Mechanical Science and Technology, 2018, 37(1):55-62. [10] 王振宝, 秦四成. 装载机液力变矩器的动态特性分析[J]. 华南理工大学学报(自然科学版), 2016, 44(7):41-46. WANG Zhenbao, QIN Sicheng. Analysis of dynamic characteristics of loader hydraulic torque converter[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(7):41-46. [11] 李文嘉,王安麟,李晓田,等. 循环工况下变矩器叶片角设计空间的性能优化[J]. 哈尔滨工程大学学报, 2017, 38(11):1781-1785. LI Wenjia, WANG Anlin, LI Xiaotian, et al. Performance optimization of torque converter blade angle design space under cyclic conditions[J]. Journal of Harbin Engineering University, 2017, 38(11):1781-1785. [12] 常绿. 基于性能评价网状图的装载机发动机与液力变矩器匹配优化[J]. 农业工程学报, 2012, 28(1):50-54. CHANG Lü. Matching optimization of loader engine and hydraulic torque converter based on performance evaluation network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(1):50-54. [13] 王安麟,章明犬,李文嘉,等. 采用装载机整机实验的液力变矩器性能匹配指标[J]. 西安交通大学学报, 2015, 49(10):54-60. WANG Anlin, ZHANG Mingquan, LI Wenjia, et al. Performance matching index of hydraulic torque converter using the whole loader experiment[J]. Journal of Xi'an Jiaotong University, 2015, 49(10):54-60. [14] 常绿,徐礼超,吕猛,等. 基于典型工况试验的装载机循环工况构建[J]. 农业工程学报, 2018, 34(1):63-69. CHANG Lü, XU Lichao, LÜ Meng, et al. Construction of loader cycle based on typical condition test[J]. Journal of Agricultural Engineering, 2018, 34(1):63-69. [15] 马相明,孙霞,张强. 轮式装载机典型作业工况构建与分析[J]. 山东大学学报(工学版), 2015, 45(5):82-87. MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis of typical working conditions of wheel loader[J]. Journal of Shandong University (Engineering Edition), 2015, 45(5):82-87. [16] 邹乃威,黄鸿岛,章二平,等. 面向作业终端动力需求的装载机循环工况的创建[J]. 农业工程学报, 2015, 31(1):78-85. ZOU Naiwei, HUANG Hongdao, ZHANG Erping, et al. Creation of loader cycle conditions oriented to the power demand of the operation terminal[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1):78-85. [17] 黄杰,王东,王新晴,等. 液压挖掘机作业循环状态智能识别方法[J]. 浙江大学学报(工学版), 2019, 53(9):1663-1673. HUANG Jie, WANG Dong, WANG Xinqing, et al. Intelligent recognition method of operating cycle status of hydraulic excavator[J]. Journal of Zhejiang University (Engineering Science Edition), 2019, 53(9):1663-1673. [18] 朱建新,沈东羽,吴钪. 基于激光点云的智能挖掘机目标识别[J]. 计算机工程, 2017, 43(1):297-302. ZHU Jianxin, SHEN Dongyu, WU Kang. Intelligent excavator target recognition based on laser point cloud[J]. Computer Engineering, 2017, 43(1):297-302. [19] 王少杰,侯亮,方奕凯,等. 考虑产品运行大数据的装载机变速箱优化设计[J]. 机械工程学报, 2018, 54(22):218-232. WANG Shaojie, HOU Liang, FANG Yikai, et al. Optimal design of loader gearbox considering product operation big data[J]. Journal of Mechanical Engineering, 2018, 54(22):218-232. [20] 张泽宇,惠记庄,武琳琳,等. 一种装载机用发动机与液力变矩器的功率匹配方法:中国, CN109990090B[P]. 2020-07-10. ZHANG Zeyu, HUI Jizhuang, WU Linlin, et al. A power matching method for loader engines and hydraulic torque converters:China, CN109990090B[P]. 2020-07-10. [21] ZHANG Zeyu, HUI Jizhuang, SHI Ze, et al. Cycle condition identification of loader based on optimized KNN algorithm[J]. IEEE Access, 2020(8):69532- 69542. [22] 张泽宇,惠记庄,石泽. 小波包最优基分解树的降噪滤波方法研究[J]. 机械科学与技术, 2020, 39(1):28-34. ZHANG Zeyu, HUI Jizhuang, SHI Ze. Research on denoising filtering method of wavelet packet optimal basis decomposition tree[J]. Mechanical Science and Technology, 2020, 39(1):28-34. [23] 张泽宇,卜正锋,惠记庄,等. 牵引工况下大功率液力变矩器总成热特性研究[J]. 长安大学学报(自然科学版), 2018, 38(3):116-126. ZHANG Zeyu, BU Zhengfeng, HUI Jizhuang, et al. Thermal characteristics of high-power hydraulic torque converter assembly under traction conditions[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(3):116-126. [24] 王松林. 轮式装载机液力传动系统节能研究[D]. 长春:吉林大学, 2015. WANG Songlin. Research on fuel-saving of hydrodynamic transmission system for wheel loader[D]. Changchun:Jilin University, 2015. |