[1] 蔡英凤,李健,孙晓强,等. 智能汽车路径跟踪混合控制策略研究[J]. 中国机械工程, 2020, 31(3):289-298. CAI Yingfeng, LI Jian, SUN Xiaoqiang, et al. Research on hybrid control strategy for intelligent vehicle path tracking[J]. China Mechanical Engineering, 2020, 31(3):289-298. [2] GUERRERO J, TORRES J, CREUZE V, et al. Saturation based nonlinear PID control for underwater vehicles:Design, stability analysis and experiments[J]. Mechatronics, 2019, 61:96-105. [3] FARAG W. Complex trajectory tracking using PID control for autonomous driving[J]. International Journal of Intelligent Transportation Systems Research, 2020, 18(2):356-366. [4] HAN G, FU W, WANG W, et al. The lateral tracking control for the intelligent vehicle based on adaptive PID neural network[J]. Sensors (Basel), 2017, 17(6):1-15. [5] 段建民,杨晨,石慧. 基于Pure Pursuit算法的智能车路 径跟 踪[J]. 北京 工业 大学学 报, 2016, 42(9):1301-1306. DUAN Jianmin, YANG Chen, SHI Hui. Path tracking based on pure pursuit algorithm for intelligent vehicles[J]. Journal of Beijing University of Technology, 2016, 42(9):1301-1306. [6] YANG J, BAO H, MA N, et al. An algorithm of curved path tracking with prediction model for autonomous vehicle[C]//201713th International Conference on Computational Intelligence and Security (CIS), December 15-18, 2017, Hong Kong, China. New York:IEEE, 2017:405-408. [7] FAN Z, CHEN H. Study on path following control method for automatic parking system based on LQR[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2017, 10(1):41-50. [8] 熊璐,杨兴,卓桂荣,等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56(10):127-143. XIONG Lu, YANG Xing, ZHUO Guirong, et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering, 2020, 56(10):127-143 [9] 陈龙,邹凯,蔡英凤,等. 基于NMPC的智能汽车纵横向综合轨迹跟踪控制[J]. 汽车工程, 2021, 43(2):153-161. CHEN Long, ZOU Kai, CAI Yingfeng, et al. Longitudinal and lateral comprehensive trajectory tracking control of intelligent vehicles based on NMPC[J]. Automotive Engineering, 2021, 43(2):153-161. [10] CHENG S, LI L, CHEN X, et al. Model-predictivecontrol based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9):8698-8707. [11] 王艺,蔡英凤,陈龙,等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报, 2019, 55(8):136-144. WANG Yi, CAI Yingfeng, CHEN Long, et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control[J]. Journal of Mechanical Engineering, 2019, 55(8):136-144, 153. [12] 吴运雄,曾碧. 基于深度强化学习的移动机器人轨迹跟踪和动态避障[J]. 广东工业大学学报, 2019, 36(1):42-50. WU Yunxiong, ZENG Bi. Trajectory tracking and dynamic obstacle avoidance of mobile robot based on deep reinforcement learning[J]. Journal of Guangdong University of Technology, 2019, 36(1):42-50. [13] 周楠, 陈刚. 机器人驾驶车辆深度强化学习换挡策略[J]. 汽车工程, 2020, 42(11):1473-1481. ZHOU Nan, CHEN Gang. Gearshifting strategy for robot-driven vehicles based on deep reinforcement learning[J]. Automotive Engineering, 2020, 42(11):1473-1481 [14] YU R, SHI Z, HUANG C, et al. Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle[C]//201736th Chinese Control Conference (CCC), July 26-28, 2017, Dalian, China. New York:IEEE, 2017:4958-4965. [15] SHAN Y, ZHENG B, CHEN L, et al. A reinforcement learning-based adaptive path tracking approach for autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10):10581-10595. [16] CHEN I, CHAN C. Deep reinforcement learning based path tracking controller for autonomous vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2021, 235(2-3):541-551. [17] 高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报, 2004, 30(1):86-100. GAO Yang, CHEN Shifu, LU Xin. Research on reinforcement learning technology:A review[J]. ACTA AUTOMATICA SINICA, 2004, 30(1):86-100. [18] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//International conference on machine learning. New York:PMLR, 2016:1928-1937. [19] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[J]. arXiv 1312.5602, 2013. |