• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (3): 232-248.doi: 10.3901/JME.2023.03.232

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

面向多品种小批量制造过程的NAD-EWMA控制图多目标优化设计方法

陈克强, 姜兴宇, 刘伟军, 田志强, 徐效文, 李世磊, 索英祁   

  1. 沈阳工业大学机械工程学院 沈阳 110870
  • 收稿日期:2022-03-28 修回日期:2022-09-19 出版日期:2023-02-05 发布日期:2023-04-23
  • 通讯作者: 刘伟军(通信作者),男,1969年出生,博士,教授,博士研究生导师。主要研究方法为智能制造、激光制造。E-mail:wjliu@sut.edu.cn
  • 作者简介:陈克强,男,1993年出生,博士研究生。主要研究方向工序质量控制、激光智能制造。E-mail:ckq_1106@smail.sut.edu.cn
  • 基金资助:
    辽宁省揭榜挂帅科技攻关(1619403089104)和辽宁省高校创新团队 (20211402)资助项目。

Quality Control Method of Key Processes in Multi Variety and Small Batch Manufacturing Process Based on NAD-EWMA Control Chart

CHEN Keqiang, JIANG Xingyu, LIU Weijun, TIAN Zhiqiang, XU Xiaowen, LI Shilei, SUO Yingqi   

  1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870
  • Received:2022-03-28 Revised:2022-09-19 Online:2023-02-05 Published:2023-04-23

摘要: 针对面向多品种小批量制造过程设计质量控制图面临的样本数量少、分布不确定问题,提出一种基于非参数、自适应、动态EWMA控制图的多目标优化设计方法。基于非参数统计理论与自适应控制的思想,构建与样本数据分布无关的控制图统计量,并设计一种基于聚类距离的动态抽样方法实现样本抽样;在此基础上,考虑统计性、经济性建立控制图多目标优化设计模型,基于改进人工鱼群算法与云清晰综合评价方法实现对模型求解,进而构建面向多品种小批量制的非参数自适应动态EWMA控制图。最后,以航天复杂构件制造过程为例,对制造过程进行动态监控。结果表明,所提方法能够快速监控到质量异常,监控性能高,验证了该方法的有效性和可行性,为多品种小批量制造过程实际的质量监控提供一种有效的途径。

关键词: 多品种小批量, 质量控制, 非参数统计, EWMA控制图, 人工鱼群算法

Abstract: In view of the problems of small sample size and uncertain distribution in designing quality control charts for multi-variety and small-batch manufacturing processes, a multi-objective optimization design method based on non-parametric, adaptive and dynamic EWMA control charts is proposed. According to the theory of nonparametric statistics and the idea of adaptive control, control chart statistics independent of sample data distribution are constructed, and a dynamic sampling method based on clustering distance is designed to realize sample sampling; On this basis, multi-objective optimization design of the control chart is carried out considering the statistical and economic characteristics. Based on the improved artificial fish swarm algorithm and cloud clear comprehensive evaluation method, the model is solved, and the non parametric adaptive dynamic EWMA control chart for multi variety and small batch system is constructed. Finally, taking the manufacturing process of aerospace complex components as an example, the dynamic monitoring of the manufacturing process is carried out. The results show that the proposed method can quickly monitor the abnormal quality and has high monitoring performance, which proves the effectiveness and feasibility of the method, and provides an effective way for the actual quality monitoring of multi variety and small batch manufacturing process.

Key words: multi-variety and small-batch, quality control, non-parametric statistics, EWMA control chart, AFSA

中图分类号: