• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (22): 143-154.doi: 10.3901/JME.2025.22.143

• 运载工程 • 上一篇    

扫码分享

电磁作动器辅助的高速列车防滑控制策略研究

苗堉淏, 凌亮, 张恒, 翟婉明   

  1. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031
  • 收稿日期:2024-11-13 修回日期:2025-05-30 发布日期:2026-01-10
  • 作者简介:苗堉淏,男,1998年出生。主要研究方向为车辆系统动力学与安全控制。E-mail:yuhao.miao@my.swjtu.edu.cn
    凌亮(通信作者),男,1986年出生,博士,研究员。主要研究方向为车辆-轨道动力相互作用与行车安全控制。E-mail:liangling@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52388102,52072317)。

Anti-slip Control of High-speed Trains Assisted by Electromagnetic Actuators

MIAO Yuhao, LING Liang, ZHANG Heng, ZHAI Wanming   

  1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiao Tong University, Chengdu 610031
  • Received:2024-11-13 Revised:2025-05-30 Published:2026-01-10

摘要: 随着列车高速化和运营场景多样化趋势的发展,对列车运行效率提出了更高的要求,同时列车防滑控制问题愈发关键。现有防滑控制策略多通过缩减牵引/制动力矩抑制车轮滑动,这往往会造成牵引/制动能力下降。涡流制动器、轨道加压器等电磁作动器可与钢轨间产生垂/纵方向电磁力,常被用于新一代高速列车以提高牵引/制动能力。基于此提出一种电磁作动器辅助的高速列车防滑控制策略,在现有最优黏着控制的基础上,采用电磁作动器辅助牵引/制动,在解决车轮打滑问题的同时提高列车牵引/制动效率。基于车辆-轨道耦合动力学理论,建立考虑电磁作动器的高铁车辆-轨道垂纵耦合动力学模型;仿真分析复杂接触条件下电磁作动器辅助防滑控制策略对高铁车辆牵引/制动性能和轮轨动态相互作用行为的影响。结果表明,该控制策略可将轮轨纵向蠕滑率维持在最优阈值附近,电磁作动器可增大轮轨垂向力进而提升轮轨黏着性能,在制动工况下还可提供非黏着纵向涡流制动力,在保证最大黏着利用的同时提高牵引/制动力;与传统最优黏着防滑控制相比,采用电磁作动器辅助的高速列车防滑控制策略可有效提高列车在低黏着接触条件下的牵引/制动性能。

关键词: 高速列车, 电磁作动器, 防滑控制, 车辆-轨道耦合动力学, 牵引/制动

Abstract: The operation efficiency and the anti-slip control are critical issues of high-speed trains with the maximum vehicle speed is increased and the operation scenarios are diversified. The existing anti-slip control strategies tend to avoid wheel slippage by reducing the traction/braking torque, which results in a decrease of traction/braking capacity. Electromagnetic actuators, such as linear eddy current brakes and boosters, can induce vertical/longitudinal electromagnetic forces with the rail and are often equipped in the next generation trains to improve traction/braking capacity. In order to improve the traction/braking efficiency while solving the problem of wheel slippage, the electromagnetic actuator-assisted anti-slip control algorithm is proposed, in which the electromagnetic actuators is used to assist traction/braking on the basis of the optimal adhesion control. Based on the theory of vehicle-track coupled dynamics theory, the high-speed train-track coupled dynamics model equipped with electromagnetic actuators is established. The effects of this control strategy on the traction/braking performance and the wheel/rail dynamic interactions of high-speed trains under complex contact conditions are simulated and discussed. The results show that the proposed control strategy can remain the longitudinal creepage around the optimal control threshold, the electromagnetic actuators can increase the wheel/rail vertical force and thus improve the wheel/rail adhesion performance, and the non-adhesive longitudinal braking force can be provided under the braking condition. The maximum adhesion utilization is ensured and the traction/braking force is improved at the same time. Compared with the traditional anti-slip control methods, the electromagnetic actuator-assisted anti-slip control strategy can effectively improve the traction/braking performance of high-speed trains under low adhesion contact conditions.

Key words: high-speed train, electromagnetic actuator, anti-slip control, vehicle-track coupled dynamics, traction/braking

中图分类号: