• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 223-232.doi: 10.3901/JME.2025.14.223

• 运载工程 • 上一篇    

扫码分享

基于轴箱振动加速度小波包分解的高速列车车轮多边形特征识别

李新一1,2, 刘金安1, 肖新标3, 黄振鑫3, 刘晓龙3, 金学松3   

  1. 1. 中国中车长春轨道客车股份有限公司 长春 130113;
    2. 西南交通大学机械工程学院 成都 610031;
    3. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031
  • 收稿日期:2024-12-26 修回日期:2025-03-28 发布日期:2025-08-25
  • 作者简介:李新一,男,1987年出生。主要研究方向为轨道交通减振降噪。E-mail:lixinyi0906@163.com;肖新标(通信作者),男,1978年出生,博士,研究员,博士研究生导师。主要研究方向为轨道交通减振降噪。E-mail:xinbiaoxiao@163.com
  • 基金资助:
    国家自然科学基金资助项目(11202128)。

Wheel Polygon Feature Recognition of High-speed Trains Based on Axle-box Acceleration and Wavelet Packet Decomposition

LI Xinyi1,2, LIU Jinan1, XIAO Xinbiao3, HUANG Zhenxin3, LIU Xiaolong3, JIN Xuesong3   

  1. 1. CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130113;
    2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031;
    3. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031
  • Received:2024-12-26 Revised:2025-03-28 Published:2025-08-25

摘要: 高效的车轮多边形检测对于指导高速列车车轮镟修具有重要意义,现有研究在识别多边形幅值上还不够精确。提出了基于轴箱振动加速度小波包分解的车轮多边形特征动态检测方法,首先建立高速列车车辆-轨道耦合动力学模型,计算了不同阶次、不同幅值车轮多边形状态下的轴箱振动响应;利用小波包分解对轴箱振动信号进行时频分析,以小波包节点能量级作为量化多边形幅值的指标;然后使用克里金插值建立了车轮多边形特征与轴箱振动特征之间的映射关系;最后通过实际测试对该方法进行了验证,预测结果与测试结果相比平均误差为10.28%,对于多边形磨耗较严重的车轮,其显著阶次预测平均误差仅为5.68%。一定程度上弥补了动态检测方法在多边形幅值量化方面的不足,为高速列车车轮多边形特征检测提出了新的技术途径,具有良好的工程价值。

关键词: 高速列车, 多边形磨耗, 轴箱振动加速度, 小波包分解, 特征识别, 车辆-轨道耦合动力学

Abstract: Efficient wheel polygon detection is of great significance for wheel re-profiling of high-speed trains. A dynamic detection method of wheel polygon features based on wavelet packet decomposition(WPD) of axle-box acceleration is proposed. Firstly, the vehicle-track coupled dynamics model of high-speed train is established, and the axle-box accelerations caused by wheel polygon with different orders and amplitudes are calculated; WPD is used to conduct time-frequency analysis of axle-box accelerations, and the WPD node energy levels is taken as an indicator to quantify the amplitude of wheel polygons; then the mapping between the wheel polygon features and axle-box accelerations features is established by Kriging interpolation model; Finally, the method is verified by direct measurement, the average error of estimated results compared with test results is 10.28%, and for wheels with more serious polygon wear, the average error of estimated of significant order is only 5.68%. To a certain extent, it makes up for the shortage of dynamic detection methods in polygon amplitude quantification, and proposes a new technical way for high-speed train wheel polygon feature detection, which has good engineering value.

Key words: high-speed train, wheel polygonal wear, axle-box acceleration, wavelet packet decomposition, feature recognition, vehicle-track coupled dynamics

中图分类号: