• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (2): 247-256.doi: 10.3901/JME.2025.02.247

• 运载工程 • 上一篇    

扫码分享

基于模态共振原理的重载机车一系钢弹簧结构优化研究

杨逸凡1, 陈是扦1, 王开云1, 肖绯雄1, 马呈祥2   

  1. 1. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031;
    2. 中车大同电力机车有限公司 大同 037038
  • 收稿日期:2024-01-06 修回日期:2024-08-16 发布日期:2025-02-26
  • 作者简介:杨逸凡,男,1996年出生。主要研究方向为机车-轨道耦合动力学。E-mail:yifanyang@my.swjtu.edu.cn;陈是扦(通信作者),男,1991年出生,博士,副研究员,硕士研究生导师。主要研究方向为铁路装备状态监测与智能运维。E-mail:chenshiqian@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51825504, 52005416)。

Fracture Cause Research and Structural Optimization for the Heavy-Haul Locomotive Coil Spring Based on Modal Resonance Theory

YANG Yifan1, CHEN Shiqian1, WANG Kaiyun1, XIAO Feixiong1, MA Chengxiang2   

  1. 1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031;
    2. CRRC Datong Co., Ltd., Datong 037038
  • Received:2024-01-06 Revised:2024-08-16 Published:2025-02-26

摘要: 某型重载机车一系钢弹簧频繁断裂,严重威胁了车辆运行稳定性和安全性。为此,建立考虑一系钢弹簧和轮对柔性的重载机车动力学模型,从模态共振和动应力的角度对一系钢弹簧关键参数进行优化分析,形成一套优化方案;此外,开展现场跟踪试验,对优化方案的实际效果进行验证。理论分析结果表明:一系钢弹簧的一阶垂向压缩模态频率(f1)对簧丝直径和弹簧中径的变化较敏感;当f1与车轮多边形磨耗激振频率接近时,易发生模态共振,使钢弹簧的加速度和动应力显著增加;最终优化后钢弹簧的f1为107 Hz,较好地规避了车轮多边形磨耗激振频率。试验结果表明,优化方案可显著降低钢弹簧等效应力。研究结果可为钢弹簧结构设计及优化提供重要参考。

关键词: 重载机车, 一系钢弹簧, 结构优化, 车轮多边形磨耗, 模态共振

Abstract: The coil springs of a certain type of heavy-haul locomotive fracture frequently, which severely jeopardizes the running stability and safety of rolling stocks. To this end, a heavy-haul locomotive dynamics model that considered flexibilities of the coil springs and wheelsets were built. From the perspectives of modal resonance and dynamic stress, key structural parameters were optimized and analyzed. Moreover, an improvement scheme was proposed and its effectiveness was validated using field tracking test data. Theoretical analysis results show that the first vertical compression modal frequency (f1) of the coil spring is sensitive to the wire diameter and spring mean diameter. If the f1is close to the wheel polygonal wear excitation frequency, the acceleration and dynamic stress of the coil spring will increase dramatically. The f1 of the optimized coil spring is 107 Hz, which is away from the wheel polygonal wear excitation frequency. Field test results indicate that the improvement scheme can help to significantly decrease the equivalent stress of the coil spring. Research results are expected to provide significant reference for coil spring designing and optimization.

Key words: heavy-haul locomotive, coil spring, structural optimization, wheel polygonal wear, modal resonance

中图分类号: