• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (13): 308-315.doi: 10.3901/JME.2024.13.308

• 机器人与机构学设计 • 上一篇    下一篇

扫码分享

一种五轴并联加工单元的参数与刚度优化设计

何雨镐1, 谢福贵1,2, 解增辉1,2, 王金斗3, 刘辛军1,2   

  1. 1. 清华大学机械工程系摩擦学国家重点实验室 北京 100084;
    2. 清华大学精密超精密制造装备及控制北京市重点实验室 北京 100084;
    3. 烟台清科嘉机器人联合研究院有限公司 烟台 264000
  • 收稿日期:2023-10-08 修回日期:2024-02-06 出版日期:2024-07-05 发布日期:2024-08-24
  • 作者简介:何雨镐,男,2000年出生,博士研究生。主要研究方向为并联机器人运动学标定。E-mail:heyuhao22@mails.tsinghua.edu.cn;刘辛军(通信作者),男,1971年出生,博士,教授,博士研究生导师,国家杰出青年科学基金获得者,教育部“长江学者”特聘教授,国家“万人计划”领军人才,现任IFToMM中国委员会主席。主要研究方向为机构学与机器人、先进与智能制造装备。E-mail:xinjunliu@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(92148301)。

Parameters and Stiffness Optimization of a Five-axis Parallel Machining Unit

HE Yuhao1, XIE Fugui1,2, XIE Zenghui1,2, WANG Jindou3, LIU Xinjun1,2   

  1. 1. State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084;
    2. Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084;
    3. Tsingke+ Research Institute, Yantai 264000
  • Received:2023-10-08 Revised:2024-02-06 Online:2024-07-05 Published:2024-08-24

摘要: 大型复杂构件具有尺寸大、结构复杂、局部加工特征多等特点,针对该类构件的高精加工需求,提出了“大范围定位+局部五轴精雕细刻”的原位加工模式,开发了“全向移动平台+高刚度定位机构+高精度五轴并联加工单元”的移动式混联加工机器人。该装备的核心部件是末端的五轴并联加工单元,对整机装备的加工性能影响重大。为了进一步提升五轴并联加工单元的运动/力传递性能以及刚度,开展了基于运动/力传递性能评价方法的结构和尺寸参数分层优化和以提升刚度为导向的结构优化。提出了多参数分层优化方法,实现了多结构和尺寸参数优化,使运动/力传递性能相对于参数优化前提高了48.37%;采用虚拟铰链法和有限元法建立了五轴并联加工单元的刚度模型,揭示了各构件刚度对末端刚度的影响规律,辨识出机架为五轴并联加工单元的刚度薄弱环节。建立了基于刚度贡献率的刚度逐级优化方法,并针对机架进行了结构优化,使五轴并联加工单元的刚度提高了63.83%,刚度质量比提高了52.06%。基于上述优化设计结果,设计了运动/力传递性能以及刚度性能更优的五轴并联加工单元,为研发加工性能更优的新一代移动式加工装备奠定了基础。

关键词: 五轴并联加工单元, 运动/力传递性能, 参数分层优化, 刚度建模, 结构优化

Abstract: Large complex components are characterized by large size, complex structure and several local machining features. To meet the high-precise machining requirements of such components, the in-situ machining mode of “wide-range positioning + localized five-axis high-precise machining” was proposed, and a mobile hybrid machining robot of “automatic guided vehicle + high-stiffness positioning unit + high-precision five-axis parallel machining unit” has been developed. The core unit of this equipment is the five-axis parallel machining unit, which has a significant impact on the machining performance of the whole equipment. To further improve the motion/force transmission performance and stiffness of the five-axis parallel machining unit, the hierarchical optimization of structural and dimensional parameters based on the motion/force transmission performance evaluation method and the structural optimization oriented to improve the stiffness performance are carried out. The hierarchical optimization method of multiple parameters is proposed, and the optimization of multiple structural and dimensional parameters is realized, so that the motion/force transmission performance is improved by 48.37% compared with that before parameter optimization. The stiffness model of the five-axis parallel machining unit is established by the virtual joint method and the finite element method. The influence of the stiffness of each part on the stiffness of the five-axis parallel machining unit is revealed, and the base frame is identified as the stiffness weak link of the five-axis parallel machining unit. A stiffness step-by-step optimization method based on the stiffness contribution rate is established to optimize the structure of the base frame, so that the stiffness of the five-axis parallel machining unit is improved by 63.83%, and the stiffness-to-mass ratio is improved by 52.06%. Based on the above optimization results, a five-axis parallel machining unit with better motion/force transmission performance and stiffness performance is designed, which lays the foundation for the development of a new generation of mobile machining equipment with better machining performance.

Key words: five-axis parallel machining unit, motion/force transmission performance, hierarchical optimization of multiple parameters, stiffness modeling, structural optimization

中图分类号: