[1] ZHANG D, SHEN S, HAN X. Advances in reliability andmaintainability methods and engineering applications [M]. Springer, 2023. [2] 廖文和, 田威, 李波, 等. 机器人精度补偿技术与应用进展[J]. 航空学报, 2022, 43(5):9-30. LIAO Wenhe, TIAN Wei, LI Bo, et al. Advances in robot accuracy compensation technology and applications[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):9-30. [3] 周健, 郑联语, 樊伟, 等. 工业机器人定位误差在线自适应补偿[J]. 机械工程学报, 2023, 59(5):53-66. ZHOU Jian, ZHENG Lianyu, FAN Wei, et al. Online adaptive compensation of industrial robot positioning errors[J]. Journal of Mechanical Engineering, 2023, 59(5):53-66. [4] ZHANG D, SHEN S, WU J, et al. Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors[J]. Reliability Engineering & System Safety, 2023, 229:108808. [5] 刘伟, 刘顺, 邓朝晖, 等. 工业机器人定位误差补偿技术研究进展[J]. 机械工程学报, 2023, 59(17):1-16. LIU Wei, LIU Shun, DENG Chaohui, et al. Research progress on positioning error compensation technology of industrial robot[J]. Journal of Mechanical Engineering, 2023, 59(17):1-16. [6] TIAN W, ZENG Y, ZHOU W, et al. Calibration of robotic drilling systems with a moving rail[J]. Chinese Journal of Aeronautics, 2014, 27(6):1598-1604. [7] 曾远帆, 廖文和, 田威. 面向精度补偿的工业机器人采样点多目标优化[J]. 机器人, 2017, 39(2):239-248. ZENG Yuanfan, LIAO Wenhe, TIAN Wei. Multi-objective optimization of samples for industrial robot error compensation[J]. Robot, 2017, 39(2):239-248. [8] 高贯斌, 张石文, 那靖, 等. 基于标定和关节空间插值的工业机器人轨迹误差补偿[J]. 机械工程学报, 2021, 57(21):55-67. GAO Guanbin, ZHANG Shiwen, NA Jing, et al. Industrial robot trajectory error compensation based on calibration and joint space interpolation[J]. Journal of Mechanical Engineering, 2021, 57(21):55-67. [9] 倪华康, 杨泽源, 杨一帆, 等. 考虑基坐标系误差的机器人运动学标定方法[J]. 中国机械工程, 2022, 33(6):647-655. NI Huakang, YANG Zeyuan, YANG Yifan, et al. Robot kinematic calibration method considering base coordinate system error[J]. China Mechanical Engineering, 2022, 33(6):647-655. [10] HE S, MA L, YAN C, et al. Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5):1037-1050. [11] LUO X, ZHANG Y, ZHANG L. Study of error compensations and sensitivity analysis for 6-Dof serial robot[J]. Engineering Computations, 2021, 38(4):1851-1868. [12] ZHANG D, PENG Z, NING G, et al. Positioning accuracy reliability of industrial robots through probability and evidence theories[J]. AMSE-Journal of Mechanical Design, 2021, 143(1):011704. [13] ZENG Y, TIAN W, LI D, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9):2745-2755. [14] ZENG Y, TIAN W, LIAO W. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120. [15] TIAN W, MEI D, LI P, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953. [16] LIU J, ZHAO Y, LEI F, et al. Net-HDMR metamodeling method for high-dimensional problems[J]. ASME-Journal of Mechanical Design, 2023, 145(9):091706. [17] ZHAO Y, LIU J, HE Z. A general multi-fidelity metamodeling framework for models with various output correlation[J]. Structural and Multidisciplinary Optimization, 2023, 66(5):101. [18] ZHANG D, HAN X, JIANG C, et al. Time-dependent reliability analysis through response surface method[J]. AMSE-Journal of Mechanical Design, 2017, 139(4):041404. [19] BO L, WEI T, ZHANG C, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360. [20] ZHANG T, PENG F, YAN R, et al. Quantification of uncertainty in robot pose errors and calibration of reliable compensation values[J]. Robotics and Computer-Integrated Manufacturing, 2024, 89:102765. [21] ZHANG D, ZHOU P, JIANG C, et al. A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384:113990. [22] SHAO Y, LIU J. Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning[J]. Renewable Energy, 2024, 222:119798. [23] LI X, GONG C, GU L, et al. A reliability-based optimization method using sequential surrogate model and Monte Carlo simulation[J]. Structural and Multidisciplinary Optimization, 2019, 59:439-460. [24] 张宁, 张德权, 叶楠. 基于径向基网络的工业机器人误差补偿方法[J]. 河北工业大学学报, 2023, 52(5):14-20. ZHANG Ning, ZHANG Dequan, YE Nan. Error compensation of industrial robot based on radial basis function network[J]. Journal of Hebei University of Technology, 2023, 52(5):14-20. [25] 石章虎, 何晓煦, 曾德标, 等. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11):428-439. SHI Zhanghu, HE Xiaoxi, ZENG Debiao, et al. Error compensation method for mobile robot positioning based on error similarlity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):428-439. [26] JIAN X, OLEA R, YU Y. Semivariogram modeling by weighted least squares[J]. Computers Geosciences, 1996, 22(4):387-397. [27] GNEITING T, SASVáRI Z, SCHLATHER M. Analogies and correspondences between variograms and covariance functions[J]. Advances in Applied Probability, 2001, 33(3):617-630. [28] ZHANG D, ZHANG N, YE N, et al. Hybrid learning algorithm of radial basis function networks for reliability analysis[J]. IEEE Transactions on Reliability, 2021, 70(3):887-900. [29] 邸红采, 彭芳瑜, 唐小卫, 等. 机器人铣削加工误差视觉跟踪测量与补偿研究[J]. 机械工程学报, 2022, 58(14):35-43. DI Hongcai, PENG Fangyu, TANG Xiaowei, et al. Research on vision tracking measurement and compensation of robot milling error[J]. Journal of Mechanical Engineering, 2022, 58(14):35-43. [30] 康帅, 俞建成, 张进, 等. 基于粒子群优化神经网络的水下链式机器人直航阻力预报[J]. 机械工程学报, 2019, 55(21):29-39. KANG Shuai, YU Jiancheng, ZHANG Jin, et al. Direct route drag prediction of chain-structured underwater vehicle based on neural network optimized by particle swarm optimization[J]. Journal of Mechanical Engineering, 2019, 55(21):29-39. [31] WANG W, TIAN W, LIAO W, et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics Computer-Integrated Manufacturing, 2022, 73:102220. [32] LAFMEJANI A, DOROUDCHI A, FARIVARNEJAD H, et al. Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot[J]. IEEE Robotics Automation Letters, 2020, 5(2):3460-3467. [33] CHEN D, LÜ P, XUE L, et al. Positional error compensation for aviation drilling robot based on Bayesian linear regression[J]. Engineering Applications of Artificial Intelligence, 2024, 127:107263. [34] 张昌尧, 吴清锋, 张秋怡, 等. 工业机器人位置稳定时间不确定度的研究分析[J]. 电子测量技术, 2023, 46(8):148-153. ZHANG Changyao, WU Qingfeng, ZHANG Qiuyi, et al. Research and analysis on uncertainty of position stabilization time ofindustrial robot[J]. Electronic Measurement Technology, 2023, 46(8):148-153. |