机械工程学报 ›› 2024, Vol. 60 ›› Issue (13): 330-344.doi: 10.3901/JME.2024.13.330
冯树飞1,2, 班友3, 连培园4, 王伟4
收稿日期:
2023-10-09
修回日期:
2024-03-05
出版日期:
2024-07-05
发布日期:
2024-08-24
作者简介:
冯树飞(通信作者),男,1993年出生,博士,讲师,硕士研究生导师。主要研究方向为天线结构设计。E-mail:sf_feng@foxmail.com;班友,男,1990年出生,博士,副教授,硕士研究生导师。主要研究方向为天线结构机电耦合理论及应用、天线结构多学科优化设计。E-mail:banyou-xd@163.com;连培园,男,1989年出生,博士,副教授,硕士研究生导师。主要研究方向为雷达天线结构-电磁-热多学科分析设计与服役性能保障技术。E-mail:Lian100fen@126.com;王伟,男,1980年出生,博士,教授,博士研究生导师。主要研究方向为电子装备机电耦合理论、雷达天线机电热多学科优化设计。E-mail:wwang@xidian.edu.cn
基金资助:
FENG Shufei1,2, BAN You3, LIAN Peiyuan4, WANG Wei4
Received:
2023-10-09
Revised:
2024-03-05
Online:
2024-07-05
Published:
2024-08-24
摘要: 面对日益增长的射电望远镜口径和工作频率,如何满足复杂环境载荷下的望远镜性能,是大型全可动射电望远镜结构设计的难点。首先对射电望远镜的结构设计进行了概述,接着,回顾了国内外典型大型全可动射电望远镜的结构设计特点,展示了等刚度思想下保型设计,以及机电一体化设计所取得的成功,最后,针对下一代大型亚毫米波射电望远镜所面临的超高精度挑战,结合研究现状,概述了保型拓扑优化设计、多组件耦合设计、光机电一体化设计、可靠性设计、机/结构创新设计以及精准建模等方向的研究趋势。
中图分类号:
冯树飞, 班友, 连培园, 王伟. 大型全可动射电望远镜结构设计进展与挑战[J]. 机械工程学报, 2024, 60(13): 330-344.
FENG Shufei, BAN You, LIAN Peiyuan, WANG Wei. Progress and Challenges in the Structural Design of Large Fully-steerable Radio Telescopes[J]. Journal of Mechanical Engineering, 2024, 60(13): 330-344.
[1] GROTE R. Cosmic static[J]. Proceedings of the IRE, 1940, 28(2):68-70. [2] 吴鑫基. 《现代天文学与诺贝尔奖》[M]. 上海:上海科技教育出版社出版, 2021. WU Xinji. Modern astronomy and the Nobel Prize [M]. Shanghai:Shanghai Science and Technology Education Publishing House, 2021. [3] BAARS J W M. The paraboloidal reflector antenna in radio astronomy and communication[M]. New York:Springer, 2007. [4] KAVANAGH T C, TUNG D H H. Arecibo radar-radio telescope-design and construction[J]. Journal of the Construction Division, 1965, 91(1):69-98. [5] NAN R, LI D, JIN C, et al. The five-hundred-meter aperture spherical radio telescope (FAST) project[J]. International Journal of Modern Physics D, 2011, 20(06):989-1024. [6] LI D. A commentary of "Consistency radio bursts in the Milky Way”:10 remarkable discoveries from 2020 in Nature[J]. Fundamental Research, 2022, 2(2):347-348. [7] BANDYOPADHYAY S, MCGAREY P, GOEL A, et al. Conceptual design of the Lunar Crater Radio telescope (LCRT) on the far side of the moon[C]//2021 IEEE Aerospace Conference (50100). IEEE, 2021:1-25. [8] MORISON I. 50 years of the lovell telescope[J]. Astronomy & Geophysics, 2007, 48(5):23-29. [9] FRATER R H, BROOKS J W, WHITEOAK J B. The Australia telescope-overview[J]. Journal of Electrical and Electronics Engineering Australia, 1992, 12(2):103-112. [10] WIELEBINSKI R, JUNKES N, GRAHL B. The Effelsberg 100-m radio telescope:construction and forty years of radio astronomy[J]. Journal of Astronomical History & Heritage, 2011, 14(1):3-21. [11] PRESTAGE R M, CONSTANTIKES K T, HUNTER T R, et al. The Green Bank Telescope[J]. Proceedings of the IEEE, 2009, 97(8):1382-1390. [12] PRANDONI I, MURGIA M, TARCHI A, et al. The Sardinia radio telescope-from a technological project to a radio observatory[J]. Astronomy & Astrophysics, 2017, 608:A40. [13] SHEN Z Q. Tian Ma 65-m radio telescope[C] //Proceedings of The 3rd China-US Workshop on Radio Astronomy Science and Technology-Emerging Opportunities. Green Bank:NRAO and Shanghai Astronomical Observatory. 2014. [14] HUGHES D H, CORREA J C J, SCHLOERB F P, et al. The large millimeter telescope[C]//Ground-based and Airborne Telescopes III. SPIE, 2010, 7733:402-414. [15] NAPIER P J, THOMPSON A R, EKERS R D. The very large array:Design and performance of a modern synthesis radio telescope[J]. Proceedings of the IEEE, 1983, 71(11):1295-1320. [16] WOOTTEN A. The atacama large millimeter array (ALMA)[C]//Large ground-based telescopes. SPIE, 2003, 4837:110-118. [17] HALL P, SCHILLIZZI R, DEWDNEY P, et al. The Square Kilometer Array (SKA) Radio Telescope:Progress and technical directions[J]. International Union of Radio Science URSI, 2008, 236:4-19. [18] 彭勃, 金乘进, 杜彪, 等. 持续参与世界最大综合孔径望远镜SKA国际合作[J]. 中国科学:物理学力学天文学, 2012, 42(12):1292-1307. PENG Bo, JIN Chengjin, DU Biao, et al. China's participation in the SKA—the world's largest synthesis radio telescope[J]. Scientia Sinica Physica, Mechanica &Astronomica, 2012, 42(12):1292-1307. [19] RAMASAWMY J, KLAASSEN P D, CICONE C, et al. The atacama large aperture submillimetre telescope:key science drivers[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI. SPIE, 2022, 12190:112-130. [20] WANG N, XU Q, MA J, et al. The Qitai radio telescope[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(8):289512. [21] 汪敏, 徐永华, 王建成, 等. 景东120 m口径全可动脉冲星射电望远镜[J]. 中国科学:物理学力学天文学, 2022, 52(11):53-65. WAN Min, XU Ronghua, WANG Jiancheng, et al. Jingdong 120-m pulsar radio telescope[J]. Scientia Sinica Physica, Mechanica &Astronomica, 2022, 52(11):53-65. [22] LOU Z, ZUO Y, YAO Q, et al. Wide-field optical design for a 60 m submillimeter telescope[J]. Applied Optics, 2020, 59(11):3353-3359. [23] LEVY R. Structural engineering of microwave antennas: for electrical, mechanical, and civil engineers[M]. IEEE Press, 1996. [24] GAWRONSKI W. Control and pointing challenges of large antennas and telescopes[J]. IEEE Transactions on Control Systems Technology, 2007, 15(2):276-289. [25] VON HOERNER S. Design of large steerable antennas[J]. Astronomical Journal, 1967, 72:35-47. [26] FENG S, WANG C, DUAN B, et al. Design of tipping structure for 110 m high-precision radio telescope[J]. Acta Astronautica, 2017, 141:50-56. [27] ZARGHAMEE M S. Minimum weight design of enclosed antennas[J]. Journal of the Structural Division, 1969, 95(6):1139-1152. [28] LEVY R. Computer-aided design of antenna structures and components[J]. Computers & Structures, 1976, 6(4-5):419-428. [29] 叶尚辉, 李在贵. 天线结构设计[M]. 西安:西北电讯工程学院出版社, 1986. YE Shanghui, LI Zaigui. Antenna structure design [M]. Xi’an:Northwestern Telecommunication Engineering Institute Press, 1986. [30] KÄRCHER H J, BAARS J W M. Design of the large millimeter telescope/gran telescopio millimetrico (LMT/GTM)[C]//Radio Telescopes. International Society for Optics and Photonics, 2000, 4015:155-168. [31] BOROVKOV A I, SHEVCHENKO D V, GIMMELMAN V G, et al. Finite-element modeling and thermal analysis of the RT-70 radio telescope main reflector[C]//4th International Conference on Antenna Theory and Techniques (Cat. No. 03EX699). IEEE, 2003, 2:651-654. [32] LI F, YU L F, TANG J S, et al. Thermal analysis of the backup structure of the TianMa telescope[J]. Research in Astronomy and Astrophysics, 2022:22(10), 105011. [33] GREVE A, BREMER M. Thermal design and thermal behaviour of radio telescopes and their enclosures[M]. Springer Science & Business Media, 2010. [34] 刘岩, 钱宏亮, 范峰. 大型射电望远镜结构的"太阳灶"效应[J]. 机械设计与研究, 2015, 31(1):31-34. LIU Yan, QIAN Hongliang, FAN Feng. Analysis of solar oven effect on large radio telescope[J]. Machine Design and Research, 2015, 31(1):31-34. [35] BAARS J W M, HOOHGOUDT B G, GREVE A, et al. Thermal control of the IRAM 30-m millimeter radio telescope[J]. Astronomy and Astrophysics, 1988, 195:364-371. [36] ZHANG M, WANG H, ZUO Y. Method of combining thermal homology theory with a genetic algorithm for the design and optimization of precise submillimeter-wave antennas[J]. Applied Optics, 2021, 60(6):1629-1636. [37] WOODY D P, PADIN S, SEBRING T. CFRP Truss for the CCAT 25m diameter submillimeter-wave telescope[C] //Ground-based and Airborne Telescopes III. SPIE, 2010, 7733:818-827. [38] LIAN P, WANG C, XU Q, et al. Real-time temperature estimation method for electromagnetic performance improvement of a large axisymmetric radio telescope under solar radiation[J]. IET Microwaves, Antennas & Propagation, 2020, 14(13):1635-1642. [39] KÄRCHER H J. Telescopes as mechatronic systems[J]. IEEE Antennas and Propagation Magazine, 2006, 48(2):17-37. [40] WHITE E, GHIGO F D, PRESTAGE R M, et al. Green Bank Telescope:Overview and analysis of metrology systems and pointing performance[J]. Astronomy & Astrophysics, 2022, 659:A113. [41] STRAIN D. Optimization of 100-meter green bank telescope[R]. NASA Technical Report, No. NASA-CR- 198868, 1994. [42] 刘岩, 钱宏亮, 范峰. 大型射电望远镜结构风荷载特性研究[J]. 红外与激光工程, 2015, 44(1):148-156 LIU Yan, QIAN Hongliang, FAN Feng. Wind load characteristics of large radio telescope [J]. Infrared and Laser Engineering, 2015, 44(1):148-156. [43] EISENTRAEGER P, SUESS M. Verification of the active deformation compensation system of the LMT/GTM by End-to-End simulations[C]//Radio Telescopes. International Society for Optics and Photonics, 2000, 4015:488-497. [44] JOHN R. Antenna tolerance theory - A review[J]. Proc IEEE, 1966, 54(4):633-640. [45] BAARS J W M, KÄRCHER H J. Radio telescope reflectors[M]. Springer, 2018. [46] BAARS J W M, KÄRCHER H J. Seventy years of radio telescope design and construction[J]. URSI Radio Science Bulletin, 2017, 2017(362):15-38. [47] YOSHIKAWA N, NAKAGIRI S. Design change to realize homologous deformation[J]. JSME International Journal. Ser. A, Mechanics and Material Engineering, 1995, 38(4):453-457. [48] LEE K H , PARK G J .Structural homology design using equality equations for linear and nonlinear conditions[J]. JSME International Journal. Series C, 1997, 40(1):150-156. [49] 占甫, 关富玲. 具有非线性homologous变形约束的桁架结构形态分析[J]. 计算力学学报, 2007, 24(5):648-653. ZHAN Fu, GUAN Fuling, Shape analysis for truss structures with the nonlinear constraint of homologous deformation[J]. Chinese Journal of Computational Mechanics, 2007, 24(5):648-653. [50] 王生洪, 李志良, 汪勤悫, 等. 大型天线结构的保型优化设计[J]. 固体力学学报, 1981(01):18-32. WANG Shenghong, LI Zhiliang, WANG Qinque, et al.A homologous optimization design of large antenna structure[J]. Chinese Journal of Solid Mechanics, 1981(01):18-32. [51] 陈树勋, 韦齐峰, 黄锦成, 等. 利用导重法进行结构轻量化设计[J]. 工程力学, 2016, 33(2):179-187. CHEN Shuxun, WEI Qifeng, HUANG Jincheng, et al. Lightening structural design using guide weight method[J]. Engineering Mechanics, 2016, 33(2):179-187. [52] 段宝岩. 天线结构分析、优化与测量[M]. 西安:西安电子科技大学出版社, 1998. DUAN Baoyan. Antenna structure analysis, optimization, and measurement[M]. Xi'an:Xidian University Press, 1998. [53] ESCHENAUER H A. Development of highly precise radio telescopes: A typical multidisciplinary problem[J]. Optimization in Industry-1997, ASME, 1998:13-30. [54] STRAIN DM, JPL-ANTOPT Antenna structure optimization program[R]. Telecommunications & Data Acquisition Progress Report 42-119, Jet Propulsion Laboratory, 1994:282–292. [55] LIU J S. HOLLAWAY L, Integrated structure- electromagnetic optimization of large reflector antenna systems[J]. Structural Optimization, 1998, 16(1):29-36. [56] 王从思, 段宝岩, 郑飞, 等. 大型空间桁架面天线的结构—电磁耦合优化设计[J]. 电子学报, 2008, 36(9):1776-1781. WANG Congsi, DUAN Baoyan, ZHENG Fei. Mechatronics optimization design and analysis of large space parabolic antennas with active truss support structures[J]. Acta Electronica Sinica, 2008, 36(9):1776-1781. [57] 李鹏, 郑飞, 段宝岩.考虑馈源位置误差的面天线机电耦合优化设计[J].电子学报, 2010, 38(6):1377-1382. LI Peng, ZHENG Fei, DUAN Baoyan.Electromechanical coupling optimization design of reflector antennas including feed position error[J].Chinese Journal of Electronics, 2010, 38(6):1377-1382 [58] 冷国俊, 王伟, 段宝岩, 等.大型反射面天线电磁场与位移场场耦合模型及其在65 m口径天线设计中的应用[J]. 机械工程学报, 2012, 48(23):1-9 LENG Guojun, WANG Wei, DUAN Baoyan, et al. Field- coupling model of reflector antenna with electromagnetic and displacement fields and its application to reflector antenna with the diameter of 65 m[J]. Journal of Mechanical Engineering, 2012, 48(23):1-9. [59] ZHANG S X, DUAN B Y, YANG G G, et al. An approximation of pattern analysis for distorted reflector antennas using structural-electromagnetic coupling model[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9):4844-4847. [60] HU N G, BAO H, DUAN B Y, et al. Topology optimization of reflector antennas based on integrated thermal-structural-electromagnetic analysis[J].Structural and Multidisciplinary Optimization, 2017, 55(2):715-722. [61] 王伟, 顾原冰, 王祖铧, 等. 反射面天线全路径机电耦合建模与补偿研究综述[J]. 中国科学:物理学力学天文学, 2024, 54:219502. WANG Wei, GU Yuanbing, WANG Zhuhua, et al. A review of full-path electromechanical coupling modeling and compensation for reflector antennas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54:219502. [62] 许万业, 段宝岩. 论高性能电子装备机电耦合技术现状与发展[J]. 机械工程学报, 2023, 59(20):338-356. XU Wanye, DUAN Baoyan. Review of electromechanical coupling technologies of high-performance electronic equipment[J]. Journal of Mechanical Engineering, 2023, 59(20):338-356. [63] WHITE E, GHIGO F D, PRESTAGE R M, et al. Green Bank Telescope:Overview and analysis of metrology systems and pointing performance[J].Astronomy & Astrophysics, 2022, 659:A113 [64] BOLLI P, GRUEFF G. Correcting secondary mirror surface errors in Noto 32 m radio telescope using the active primary mirror[J]. Electronics Letters, 2003, 39(5):416-417 [65] TANAKA H, KOGISO N, SAKANO F, et al. Experimental demonstration of deformable reflector antenna system with high accuracy deformation measurement[J]. Acta Astronautica, 2022, 194:93-105. [66] ZHANG J, HUANG J, WANG S F, et al. An active pointing compensator for large beam waveguide antenna under wind disturbance[J]. IEEE/ASME Transactions on Mechatronics, 2015, 21(2):860-871. [67] INGALLS R P, ANTEBI J .Upgrading the Haystack radio telescope for operation at 115 GHz[J].Proceedings of the IEEE, 1994, 82(5):742-755. [68] ANTEBI J, ZARGHAMEE M S, Kan F K. A deformable subreflector for the Haystack radio telescope[J]. IEEE Antennas and Propagation Magazine, 1994:36(3), 19-28. [69] WEELEBINSKI R, JUNKES N, GRAHL B H. The effelsberg 100-m radio telescope: Construction and forty years of radio astronomy[J]. Journal of Astronomical History and Heritage, 2011, 14: 3-21. [70] 王生洪. 天线结构表面精度的可靠性分析[J]. 计算结构力学及其应用, 1985(2):17-27. WANG Shenghong. Reliability of surface accuracy of antenna structures[J]. Computational Structural Mechanics and Applications, 1985(2):17-27. [71] CHEN J.J. Analysis of engineering structures response to random wind excitation[J]. Computers & Structures, 1994, 51(6):687-693. [72] CHEN J J, DAI B, SUN H. Reliability of reflector accuracy of parabolic antenna under the action of random wind load[J].Computers & Structures, 1990, 37(4):429-434. [73] 陈建军, 高伟, 刘伟, 等. 多工况下天线结构的可靠性优化设计[J]. 机械科学与技术, 2002, 21(3):373-375. CHEN Jianjun, GAO Wei, LIU Wei, et al. Optimal design of antenna structures based on reliabilty under multi-loading[J]. Machining Science and Technology, 2002, 21(3):373-375. [74] ROCCA P , MANICA L , MASSA A .Interval-based analysis of pattern distortions in reflector antennas with bump-like surface deformations[J]. IET Microwaves Antennas & Propagation, 2014, 8(15):1277-1285. [75] HU N G, XU W Y. Reliability-based design of reflector antennas with integrated structural- electromagnetic analysis using adaptive kriging modeling[J]. Journal of Mechanical Science and Technology, 2021, 35(12):5601-5610. [76] SUN Z H, DUAN B Y, ZHANG Y Q, et al. Influence and experiment of cable-net manufacturing errors on surface accuracy of mesh reflector antennas[J]. Chinese Journal of Aeronautics, 2023, 36(2), 363-376. [77] 陈建军, 曹鸿钧, 张建国, 等. 论大型星载展开天线结构系统的可靠性[J]. 工程力学, 2014, 31(2):25-34. CHEN Jianjun, CAO Hongjun, ZHANG Jianguo, et al. Reliability overview of large spaceborne deployable antenna-structure system[J]. Engineering Mechanics, 2014, 31(2):25-34. [78] FEINBERG L D, MCELWAIN M W, BOWERS C W, et al. James Webb Space Telescope optical stability lessons learned for future great observatories[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2024, 10(1):011204-011204. [79] MENZEL M., DAVIS M, PARROSJ K, et al. The design, verification, and performance of the James Webb space telescope[J]. Publications of the Astronomical Society of the Pacific, 2023, 135(1047):058002. [80] ROGERS J, FORDHAM B, TRANCHO G, et al. Reliability estimate for the Thirty Meter Telescope[C]//. In Modeling, Systems Engineering, and Project Management for Astronomy X. SPIE, 2022, 12187:333-344. [81] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224. [82] BENDSØE M P, SIGMUND O. Topology optimization: Theory, methods, and applications[M]. Springer Science & Business Media, 2003. [83] SIGMUND O. EML Webinar Overview:Topology optimization—status and perspectives[J]. Extreme Mechanics Letters, 2020, 39:100855. [84] KURITA M, OHMORI H, KUNDA M, et al. Light-weight telescope structure optimized by genetic algorithm[C]// Ground-based and Airborne Telescopes III. International Society for Optics and Photonics, 2010, 7733:77333E. [85] 冷国俊, 王伟, 吴顶峰, 等. 天线辐射梁的连续体拓扑优化研究[J]. 应用力学学报, 2010(4):834-838. LENG Guojun, WANG Wei, WU Dingfeng, et al. Continuum topology optimization of antenna radiation beam[J]. Chinese Journal of Applied Mechanics, 2010, 27(4):834-838. [86] ZHANG S X, DUAN B Y. Topology optimization of continuum supporting structures for microwave antenna applications[J]. Structural and Multidisciplinary Optimization, 2020, 62:2409-2422. [87] GAO J, WANG H, ZUO Y, et al. Application of the super element model with topology optimization method and genetic algorithm in the design of a large submillimeter telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8(2):028001-028001. [88] KÄRCHER H J, BAARS J W M. Ideas for future large single dish radio telescopes[C]//Ground-based and Airborne Telescopes V. International Society for Optics and Photonics, 2014, 9145:914503. [89] USOFF J M, CLARKE M T, LIU C, et al. Optimizing the HUSIR antenna surface[J]. Lincoln Laboratory Journal, 2014, 21(1):83-105. [90] NIKOLAS T W. Construction of the HUSIR Antenna[J]. Lincoln Laboratory Journal, 2014, 21(1):45-82. [91] HUGHES D H, SCHLOERB F P, ARETXAGA I, et al. The large millimeter telescope (LMT) Alfonso Serrano:Current Status and Telescope Performance[C]// Ground-based and Airborne Telescopes VIII. SPIE, 2020, 11445:447-468. [92] GREVE A, KÄRCHER H J. Performance improvement of a flexible telescope through metrology and active control[J]. Proceedings of the IEEE, 2009, 97(8):1412-1420. [93] KÄRCHER H J. Enhanced pointing of telescopes by smart structure concepts based on modal observers[C]// Smart Structures and Materials 1999:Smart Structures and Integrated Systems. International Society for Optics and Photonics, 1999, 3668:998-1009. [94] LAASSEN P D, MROCZKOWSKI T K, CICONE C, et al. The atacama large aperture submillimeter telescope (AtLAST)[C]//Ground-based and Airborne Telescopes VIII. International Society for Optics and Photonics, 2020, 11445:114452F. [95] KAWABE R, KOHNO K, TAMURA Y, et al. New 50-m-class single-dish telescope:Large submillimeter telescope (LST)[C]//Ground-based and Airborne Telescopes VI. International Society for Optics and Photonics, 2016, 9906:779-790. [96] GAO J, WANG H, ZUO Y, et al. Modeling and analysis of the active surface system for the large single-dish sub-mm telescope[J]. IEEE Transactions on Antennas and Propagation, 2022, 71(1):225-235. [97] SEBRING T A, RADFORD S, GIOVANELLI R, et al. The cornell caltech atacama telescope status and technical progress[C]//Ground-based and Airborne Telescopes II. International Society for Optics and Photonics, 2008, 7012:70121H. [98] WOODY D, PADIN S, REDDING D, et al. Design for CCAT, a 25 m diameter telescope operating from 200 GHz to 1.5 THz[C]//2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011:1-4. [99] PARSHLEY S C, KRONSHAGE J, BLAIR J, et al. CCAT-prime:A novel telescope for sub-millimeter astronomy[C]//Ground-based and Airborne Telescopes VII. International Society for Optics and Photonics, 2018, 10700:107005X. [100] LIAN P Y, WANG C S, XUE S, et al. Future research trend for improving large reflector antenna service performance[J]. Engineering, 2021, 7(8):1047-1050. [101] GONZALEZ-VALDES B, MARTINEZ-LORENZO J A, RAPPAPORT C, et al. A new physical optics based approach to subreflector shaping for reflector Antenna Distortion compensation[J]. IEEE Transactions on Antennas and Propagation, 2012, 61(1):467-472. [102] HOFERER R A, RAHMAT-SAMII Y. Subreflector shaping for antenna distortion compensation:An efficient Fourier-Jacobi expansion with GO/PO analysis[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(12):1676-1687. [103] BAN Y, WANG C S, FENG S F, et al. Iteration path-length error correction approach to subreflector shaping for distortion compensation of large reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4):2729-2734. [104] 王伟, 王祖铧, 顾原冰, 等. 变形双反射面天线的机电耦合分析方法[J]. 中国科学:物理学力学天文学, 2024, 54(01):102-111. WANG Wei, WANG Zhuhua, GU Yuanbing, et al. Electromechanical coupling analysis method of deformed dual-reflector antennas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(01):102-111. [105] KOPPEN S, KOLK M, · KEMPEN F C M, et al. Topology optimization of multicomponent optomechanical systems for improved optical performance[J]. Structural and Multidisciplinary Optimization, 2018, 58:885-901. [106] REDDING D, LOU J Z, KISSIL A, et al. Wavefront controls for a large submillimeter-wave observatory[C]// Ground-based and Airborne Telescopes III. SPIE, 2010, 7733:807-817. [107] IMBRIALE W A, JAMNEJAD V. On real-time reflector surface distortion determination[C]//20093rd European Conference on Antennas and Propagation. IEEE, 2009:3100-3104. [108] TAMURA Y, KAWABE R, FUKASAKU Y, et al. Wavefront sensor for millimeter/submillimeter-wave adaptive optics based on aperture-plane interferometry[C]// Ground-based and Airborne Telescopes VIII. SPIE, 2020, 11445:350-358. [109] NAKANO S, TAMURA Y, TANIGUCHI A, et al. Characterization of sensitivity and responses of a 2-element prototype wavefront sensor for millimeter- wave adaptive optics attached to the Nobeyama 45 m telescope[C]//Adaptive Optics Systems VIII. SPIE, 2022, 12185:2173-2182. [110] LIANG J, WEI W, LI Z, et al. Toward a phase adaptive stabilization system for next-generation single-dish sub-mm telescope part—I:Multipath phase measurements based on ultrastable microwave signal distribution[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:1-10. [111] PADIN S. Inexpensive mount for a large millimeter- wavelength telescope[J]. Applied Optics, 2014, 53(20), 4431-4439. [112] HE S, DUAN X C, QU X P, et al. Kinematic modeling and motion control of a parallel robotic antenna pedestal[J]. Robotica, 2023, 41(11):3275-3295. [113] 冯树飞, 段学超, 段宝岩.一种大型全可动反射面天线的轻量化创新设计[J]. 中国科学:物理学力学天文学, 2017, 47(5):78-90. FENG Shufei, DUAN Xuechao, DUAN Baoyan, A novel design of large full-steerable reflector antenna[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(5):78-90. [114] SARAWIT A T, KAN F W. Finite element analyses of CCAT preliminary design[C]//Ground-based and Airborne Telescopes V. International Society for Optics and Photonics, 2014, 9145:91452I. [115] BUFFA F, CAUSIN A, CAZZANI A, et al. The sardinia radio telescope:A comparison between close-range photogrammetry and finite element models[J]. Mathematics and Mechanics of Solids, 2017, 22(5), 1005-1026. |
[1] | 谷永振, 段宝岩, 杜敬利, 史伟杰, 张永涛, 武路鹏, 冯树飞. 基于改进力密度法和非线性有限元法的索-膜-桁架天线形态优化设计[J]. 机械工程学报, 2023, 59(9): 252-262. |
[2] | 李庆伟, 姜鹏, 南仁东. 500 m口径射电望远镜索网与面板单元自适应 连接机构设计分析*[J]. 机械工程学报, 2017, 53(7): 62-68. |
[3] | 朱万旭, 覃荷瑛, 李居泽, 欧进萍. 基于锚固区外置光纤光栅传感器的FAST工程拉索索力监测研究[J]. 机械工程学报, 2017, 53(17): 23-30. |
[4] | 段清娟, 殷成熙, 段宝岩. FAST 50 m模型馈源支撑系统的结构参数优化[J]. 机械工程学报, 2017, 53(17): 31-35. |
[5] | 李庆伟, 姜鹏, 南仁东. FAST反射面面板单元初始间隙[J]. 机械工程学报, 2017, 53(17): 4-9. |
[6] | 姚蕊, 李庆伟, 孙京海, 孙才红, 朱文白. FAST望远镜馈源舱精度分析研究[J]. 机械工程学报, 2017, 53(17): 36-42. |
[7] | 连培园, 朱敏波, 王伟, 杨癸庚. 一种轴对称反射面天线温度场实时预估方法[J]. 机械工程学报, 2015, 51(6): 165-172. |
[8] | 刘钰;高峰. FAST反射面支承索网结构的初始状态求解[J]. , 2013, 49(6): 66-73. |
[9] | 杨东武;仇原鹰;保宏. 基于Moore-Penrose逆的索网天线预拉力设计方法[J]. , 2012, 48(21): 22-27. |
[10] | 杨东武;尤国强;保宏. 抛物面索网天线的最佳型面设计方法[J]. , 2011, 47(19): 123-128. |
[11] | 李辉;朱文白;潘高峰. 500 m口径球面射电望远镜进舱缆线连接机构的设计及其静力学分析[J]. , 2010, 46(7): 7-15. |
[12] | 李辉;朱文白. 柔索牵引并联机构的静刚度分析[J]. , 2010, 46(3): 8-16. |
[13] | 段学超;仇原鹰;段宝岩;陈光达;保宏;米建伟. 宏微并联机器人系统自适应交互PID监督控制[J]. , 2010, 46(1): 10-17. |
[14] | 郭永卫;王启明. 索网机构的理论建模与位置求解[J]. , 2010, 46(1): 18-23. |
[15] | 杨琼方;王永生;范露. CFD在“机电一体化”导管桨性能分析及优化设计中的应用[J]. , 2010, 46(1): 162-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||