[1] TENGBERG A, de BOVEE F, HALL P, et al. Benthic chamber and profile landers in oceanography-A review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35:253-294. [2] CUI W. An overview of submersible research and development in China[J]. Journal of Marine Science and Application, 2018, 17(4):459-470. [3] PFANNKUCHE O, LINKE P. GEOMAR landers as long-term deep-sea observatories[J]. Sea Technology, 2003, 44(9):50-55. [4] WEI Z F, LI W L, LI J, et al. Multiple in situ nucleic acid collections (MISNAC) from deep-sea waters[J]. Frontiers in Marine Science, 2020, 7:81. [5] BARCLAY D R, SIMONET F, BUCKINGHAM M J. Deep sound:A free-falling sensor platform for depth-profiling ambient noise in the deep ocean[J]. Marine Technology Society Journal, 2009, 43(5):144-150. [6] 邹大鹏, 肖体兵, 龙建军, 等.海底表层沉积物声速特性研究进展与探讨[J].海洋学报, 2019, 41(1):160-171. ZOU Dapeng, XIAO Tibing, LONG Jianjun, et al. Research progress and discussion on sound velocity characteristics of seafloor surface sediments[J]. Haiyang Xuebao, 2019, 41(1):160-171. [7] JIA Y, ZHU C, LIU L, et al. Marine geohazards:Review and future perspective[J]. Acta Geologica Sinica-English Edition, 2016, 90(4):1455-1470. [8] BLACK K S, FONES G R, PEPPE O C, et al. An autonomous benthic lander:Preliminary observations from the UK BENBO thematic programme[J]. Continental Shelf Research, 2001, 21(8-10):859-877. [9] 王俊珠, 覃楚倩, 罗旭龙, 等.静力触探在水合物勘探中的应用[J].海洋地质前沿, 2019, 35(11):52-59. WANG Junzhu, QIN Chuqian, LUO Xulong, et al. Application prospect of CPT in gas hydrate exploration[J]. Marine Geology Frontiers, 2019, 35(11):52-59. [10] TRÉHU A M, de MOOR A, MADRID J M, et al. Post-seismic response of the outer accretionary prism after the 2010 Maule earthquake, Chile[J]. Geosphere, 2020, 16(1):13-32. [11] JAMIESON A J, FUJII T, SOLAN M, et al. HADEEP:Free-falling landers to the deepest places on Earth[J]. Marine Technology Society Journal, 2009, 43(5):151-160. [12] LINLEY T D, GERRINGER M E, YANCEY P H, et al. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 114:99-110. [13] 陈俊, 张奇峰, 李俊, 等.深渊着陆器技术研究及马里亚纳海沟科考应用[J].海洋技术学报, 2017, 36(1):63-69. CHEN Jun, ZHANG Qifeng, LI Jun, et al. Research on the application of the hadal lander technology in the mariana trench[J]. Journal of Ocean Technology, 2017, 36(1):63-69. [14] 于新生, 阎子衿, 朱明亮, 等.自主式深海海底溶质通量原位观测站研究进展[J].海洋科学, 2017, 41(6):150-161. YU Xinsheng, YAN Zijin, ZHU Mingliang, et al. Review of seabed landers for monitoring solute fluxes in deep sea[J]. Marine Sciences, 2017, 41(6):150-161. [15] 崔维成.载人深渊探测器的研究进展[J].科学, 2017, 69(4):4-9. CUI Weicheng. Process in human occupied vehicle research[J]. Science, 2017, 69(4):4-9. [16] BAKER C A, ESTAPA M L, IVERSEN M, et al. Are all sediment traps created equal?An intercomparison study of carbon export methodologies at the PAP-SO site[J]. Progress in Oceanography, 2020:102317. [17] CHEN J, HUANG Y, LIN Y, et al. A novel sediment pressure sampling device carried by a hadal-rated lander[J]. Journal of Marine Science and Engineering, 2020, 8(11):839. [18] 张红, 贾永刚, 刘晓磊, 等.全海深海底沉积物力学特性原位测试技术[J].海洋地质前沿, 2019, 35(2):1-9. ZHANG Hong, JIA Yonggang, LIU Xiaolei, et al. Progress in in-situ measurement of sediment mechanical properties for full ocean depth[J]. Marine Geology Frontier, 2019, 35(2):1-9. [19] XUE G, LIU Y, GUO L, et al. Optimization on motion-robust and energy-saving controller for hydraulic penetration system of seabed equipment[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2021, 235(3):792-808. [20] RICHARDSON M D, BRIGGS K B. In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments:Implications for high-frequency acoustic propagation and scattering[J]. Geo-Marine Letters, 1996, 16(3):196-203. [21] 刘涛, 柴万里, 郭磊.基于FBG的深海沉积物孔压观测设备研究[J].中国海洋大学学报, 2017, 47(10):126-133. LIU Tao, CHAI Wanli, GUO Lei. FBG based instrument for marine sediment pore pressure research[J]. Periodical of Ocean University of China, 2017, 47(10):126-133. [22] CHEN J, ZHANG Q, ZHANG Y, et al. Scientific investigation application of hadal landers in the Mariana Trench[C]//OCEANS 2017-Anchorage. IEEE, 2017:1-8. [23] SPAGNOLI F, PENNA P, GIULIANI G, et al. The AMERIGO lander and the automatic benthic chamber (CBA):Two new instruments to measure benthic fluxes of dissolved chemical species[J]. Sensors, 2019, 19(11):2632. [24] 陈瀚, 丘学林, 贺恩远, 等.深渊着陆器坐底位置的精确测量和反演计算[J].地球物理学报, 2019, 62(5):1744-1754. CHEN Han, QIU Xuelin, HE Enyuan, et al. Accurate measurement and inversion for the seafloor positions of hadal landers[J]. Chinese Journal of Geophysics, 2019, 62(5):1744-1754. [25] SCHMIDT W E, SIEGEL E. Free descent and on bottom ADCM measurements in the Puerto Rico Trench, 19.77° N, 67.40° W[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2011, 58(9):970-977. [26] MORTENSEN A C, LANGE R E. Design considerations of wing stabilized free-fall vehicles[C]//Deep Sea Research and Oceanographic Abstracts. Elsevier, 1976, 23(12):1231-1240. [27] 李彬, 崔胜国, 唐实, 等.深海生态过程长期定点观测系统研发及冷泉区科考应用[J].高技术通讯, 2019, 29(7):675-684. LI Bin, CUI Shengguo, TANG Shi, et al. Development and application of the long-term fixed point observation system of deep-sea ecological process[J]. Chinese High Technology Letters, 2019, 29(7):675-684. [28] ANDERLINI E, PARKER G G, THOMAS G. Control of a ROV carrying an object[J]. Ocean Engineering, 2018, 165:307-318. [29] 祝连庆, 孙广开, 李红, 等.智能柔性变形机翼技术的应用与发展[J].机械工程学报, 2018, 54(14):28-42. ZHU Lianqing, SUN Guangkai, LI Hong, et al. Intelligent and flexible morphing wing technology:A review[J]. Journal of Mechanical Engineering, 2018, 54(14):28-42. [30] YANG M, WANG Y, WANG S, et al. Motion parameter optimization for gliding strategy analysis of underwater gliders[J]. Ocean Engineering, 2019, 191:106502. [31] 李晔, 刘建成, 徐玉如, 等.带翼水下机器人运动控制的动力学建模[J].机器人, 2005(2):128-131. LI Ye, LIU Jiancheng, XU Yuru, et al. Dynamics modeling for motion control of underwater vehicle with wing[J]. Robot, 2005(2):128-131. [32] SHANG X, CHAO T, MA P, et al. An efficient local search-based genetic algorithm for constructing optimal Latin hypercube design[J]. Engineering Optimization, 2019:1-17. [33] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge, MA:MIT Press, 2006. [34] GELBART M A, SNOEK J, ADAMS R P. Bayesian optimization with unknown constraints[J]. arXiv:1403.5607, 2014. [35] SONG Y, WANG Y, YANG S, et al. Sensitivity analysis and parameter optimization of energy consumption for underwater gliders[J]. Energy, 2020, 191:116506. [36] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO:A MATLAB platform for evolutionary multi-objective optimization[educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4):73-87. [37] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I:Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4):577-601. |