[1] WANG W J, ZHANG H F, WANG H Y, et al. Study on the adhesion behavior of wheel/rail under oil, water and sanding conditions[J]. Wear, 2011, 217(9-10):2693-2698. [2] WU B, WEN Z F, WANG H Y, et al. Numerical analysis on wheel/rail adhesion under mixed contamination of oil and water with surface roughness[J]. Wear, 2014, 314(1-2):140-147. [3] ZHAI W M, JIN X S, WEN Z F, et al. Wear problems of high-speed wheel/rail systems:Observations, causes, and countermeasures in China[J]. Applied Mechanics Reviews, 2020, 72(6):060801. [4] 何静,刘建华,张昌凡. 重载机车轮轨黏着利用技术研究综述[J]. 铁道学报, 2018, 40(9):30-39. HE Jing, LIU Jianhua, ZHANG Changfan. An overview on wheel-rail adhesion utilization of heavy-hual locomotive[J]. Journal of the China Railway Society, 2018, 40(9):30-39. [5] LIN W L, LIU Z G, DIAO L J, et al. Maximum adhesion force control simulated model of electric locomotive[J]. IEEE Transactions on Industrial Electronics, 2007, 1-6:1704-1708. [6] ZIREK A, VOLTR P, LATA M. Validation of an anti-slip control method based on the angular acceleration of a wheel on a roller rig[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2019, 234(9):1029-1040. [7] ZIREK A, ONAT A. A novel anti-slip control approach for railway vehicles with traction based on adhesion estimation with swarm intelligence[J]. Railway Engineering Science, 2020, 28(4):346-364. [8] SADR S, KHABURI D A, RODRIGUEZ J. Predictive slip control for electrical trains[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6):3446-3457. [9] 马天和,吴萌岭,田春. 基于黏着力观测器的列车空气制动防滑控制[J]. 同济大学学报(自然科学版). 2020, 48(11):1668-1675. MA Tianhe, WU Mengling, TIAN Chun. Anti-skid control based on adhesion force observer for train pneumatic braking[J]. Journal of Tongji University (Natural Science), 2020, 48(11):1668-1675. [10] WARD C P, GOODALL R M, DIXON R, et al. Adhesion estimation at the wheel-rail interface using advanced model-based filtering[J]. Vehicle System Dynamics, 2012, 50(12):1797-1816. [11] HUSSAIN I, MEI T X, RITCHINGS R T. Estimation of wheel-rail contact conditions and adhesion using the multiple model approach[J]. Vehicle System Dynamics, 2013, 51(1):32-53. [12] SHRESTHA S, WU Q, SPIRYAGIN M. Review of adhesion estimation approaches for rail vehicles[J]. International Journal of Rail Transportation, 2019, 7(2):79-102. [13] SPIRYAGIN M, WOLFS P, SZANTO F, et al. Simplified and advanced modelling of traction control systems of heavy-haul locomotives[J]. Vehicle System Dynamics, 2015, 53(5):672-691. [14] TIAN Y, LIU S, DANIEL W J T, et al. Investigation of the impact of locomotive creep control on wear under changing contact conditions[J]. Vehicle System Dynamics, 2015, 53(5):692-709. [15] TAO G Q, WEN Z F, GUAN Q H, et al. Locomotive wheel wear simulation in complex environment of wheel-rail interface[J]. Wear, 2019, 430:214-221. [16] SHRESTHA S, SPIRYAGIN M, WU Q. Friction condition characterization for rail vehicle advanced braking system[J]. Mechanical Systems and Signal Processing, 2019, 134:106324. [17] POLACH O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005, 258(7-8):992-1000. [18] YANG Y F, GUO X R, SUN Y, et al. Non-hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions[J]. Vehicle System Dynamics, 2022, 60(12):2167-2189. [19] 翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京:科学出版社, 2015. ZHAI Wanming. Vehicle-track coupled dynamics[M]. 4th ed. Beijing:Science Press, 2015. [20] 王开文. 车轮接触点迹线及轮轨接触几何参数的计算[J]. 西南交通大学学报, 1984(1):89-99. WANG Kaiwen. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters[J]. Journal of Southwest Jiaotong University, 1984(1):89-99. [21] SPIRYAGIN M, POLACH O, COLE C. Creep force modelling for rail traction vehicles based on the Fastsim algorithm[J]. Vehicle System Dynamics, 2013, 51(11):1765-1783. [22] DIRKS B, ENBLOM R. Prediction model for wheel profile wear and rolling contact fatigue[J]. Wear, 2011, 271(1-2):210-217. |