机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 49-61.doi: 10.3901/JME.2025.20.049
• 材料科学与工程 • 上一篇
李广, 付一川, 喇培清, 石玗
收稿日期:2024-12-05
修回日期:2025-07-15
发布日期:2025-12-03
作者简介:李广,男,1982年出生,副研究员。主要研究方向为金属材料服役可靠性。E-mail:liguang@lut.edu.cn基金资助:LI Guang, FU Yichuan, LA Peiqing, SHI Yu
Received:2024-12-05
Revised:2025-07-15
Published:2025-12-03
摘要: 熔盐具有热容量大、导热性和热稳定性高等优异的热物理性质,作为热能存储介质在核电和光热发电等领域得到了广泛应用,但高温熔盐对金属材料具有严重腐蚀性。基于熔盐对不锈钢的腐蚀评价及机理研究,从熔盐改性和材料表面改性方面介绍了减缓熔盐对不锈钢腐蚀的主要策略。论述热纯化、化学纯化、添加纳米颗粒等熔盐改性方法以及减缓金属腐蚀的评价,分析含铝合金涂层、表面分形纹理、石墨化涂层、纳米颗粒涂层和含铝不锈钢预氧化等材料防护方法及其对减轻熔盐腐蚀的研究进展。最后指出含铝不锈钢的开发对光热发电系统的安全设计、制造和运维的重要性。
中图分类号:
李广, 付一川, 喇培清, 石玗. 光热发电用不锈钢的熔盐缓蚀策略研究进展[J]. 机械工程学报, 2025, 61(20): 49-61.
LI Guang, FU Yichuan, LA Peiqing, SHI Yu. Research Progress on Corrosion Mitigation Strategies of Stainless Steel in Concentrated Solar Power Generation[J]. Journal of Mechanical Engineering, 2025, 61(20): 49-61.
| [1] MEHOS M,TURCHI C,VIDAL J,et al. Concentrating solar power Gen3 demonstration roadmap[R]. Golden, United States:OSTI.GOV,2017. [2] DING W,BONK A,BAUER T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants:A review[J]. Frontiers of Chemical Science and Engineering,2018,12:564-576. [3] DING W,SHI H,JIANU A,et al. Molten chloride salts for next generation concentrated solar power plants:Mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cells,2019,193:298-313. [4] DING W,BAUER T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering,2021,7(3):334-347. [5] VILLADA C,DING W,BONK A,et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage:Review on salt properties and corrosion control strategies[J]. Solar Energy Materials and Solar Cells,2021,232:111344. [6] MOHAN G,VENKATARAMAN M,GOMEZ-VIDAL J,et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy Conversion and Management,2018,16(7):156-164. [7] KIPOUROS G J,SADOWAY D R. A thermochemical analysis of the production of anhydrous MgCl2[J]. Journal of Light Metals,2001,1(2):111-117. [8] XU Z,LU J,WEI X,et al. In-situ MgO generation method:A new strategy for mitigating the corrosivity of molten chloride salt[J]. Corrosion Science,2022,199:110145. [9] 刘华剑. 316不锈钢在高温熔盐中的腐蚀与防护技术研究[D]. 上海:中国科学院大学(中国科学院上海应用物理研究所),2022. LIU Huajian. Research on corrosion and protection technology of 316 stainless steel in high-temperature molten salt[D]. Shanghai:University of Chinese Academy of Sciences(Shanghai Institute of Applied Physics,Chinese Academy of Sciences),2022. [10] CHOI S,ORABONA N E,DALE O R,et al. Effect of Mg dissolution on cyclic voltammetry and open circuit potentiometry of molten MgCl2-KCl-NaCl candidate heat transfer fluid for concentrating solar power[J]. Solar Energy Materials and Solar Cells,2019,202:110087. [11] SUN H,WANG J Q,TANG Z,et al. Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and Infrared spectra[J]. Corrosion Science,2019,164:108350. [12] GONG Q,SHI H,CHAI Y,et al. Molten chloride salt technology for next-generation CSP plants:Compatibility of Fe-based alloys with purified molten MgCl2-KCl-NaCl salt at 700℃[J]. Appllied Energy,2022,324:119708. [13] 左勇,曹明鹏,申淼,等. MgCl_2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报,2021,41(1):80-86. ZUO Yong,CAO Mingpeng,SHEN Miao,et al. Study on the corrosion inhibition performance of metal Mg on 316H stainless steel in MgCl2-NaCl-KCl molten salt system[J]. Journal of Chinese Society for Corrosion and Protection,2021,41(1):80-86. [14] ZHAO Y,VIDAL J. Potential scalability of a cost-effective purification method for MgCl2-Containing salts for next-generation concentrating solar power technologies[J]. Solar Energy Materials and Solar Cells,2020,215:110663. [15] DING W,GOMEZ-VIDAL J,BONK A,et al. Molten chloride salts for next generation CSP plants:Electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells,2019,199:8-15. [16] DING W,YANG F,BONK A,et al. Molten chloride salts for high-temperature thermal energy storage:Continuous electrolytic salt purification with two Mg-electrodes and alternating voltage for corrosion control[J]. Solar Energy Materials and Solar Cells,2021,223:110979. [17] KURLEY J M,HALSTENBERG P W,MCALISTER A,et al. Enabling chloride salts for thermal energy storage:Implications of salt purity[J]. RSC Advances,2019,9(44):25602-25608. [18] MAYES R T,KURLEY III J M,HALSTENBERG P W,et al. Purification of chloride salts for concentrated solar applications[R]. Golden, United States:OSTI.GOV,2018. [19] ONG T C,SARVGHAD M,LIPPIATT K,et al. Review of the solubility,monitoring,and purification of impurities in molten salts for energy storage in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews,2020,131:110006. [20] NAVARRO M E,PALACIOS A,JIANG Z,et al. Effect of SiO2 nanoparticles concentration on the corrosion behaviour of solar salt-based nanofluids for Concentrating Solar Power plants[J]. Solar Energy Materials and Solar Cells,2022,247:111923. [21] FERNÁNDEZ A G,MUÑOZ-SÁNCHEZ B,NIETO-MAESTRE J,et al. High temperature corrosion behavior on molten nitrate salt-based nanofluids for CSP plants[J]. Renewable Energy,2019,130:902-909. [22] MA L,ZHANG C,WU Y,et al. Effect of flow rate and SiO2 nanoparticle on dynamic corrosion behavior of stainless steels in molten salt for thermal energy storage[J]. Corrosion Science,2022,194:109952. [23] NITHIYANANTHAM U,GROSU Y,GONZÁLEZ-FERNÁNDEZ L,et al. Corrosion aspects of molten nitrate salt-based nanofluids for thermal energy storage applications[J]. Solar Energy,2019,189:219-227. [24] NITHIYANANTHAM U,GROSU Y,ANAGNOSTOPOULOS A,et al. Nanoparticles as a high-temperature anticorrosion additive to molten nitrate salts for concentrated solar power[J]. Solar Energy Materials and Solar Cells,2019,203:110171. [25] GAO Q,LU Y,YU Q,et al. High-temperature corrosion behavior of austenitic stainless steel in quaternary nitrate molten salt nanofluids for concentrated solar power[J]. Solar Energy Materials and Solar Cells,2022,245:111851. [26] MUÑOZ-SÁNCHEZ B,NIETO-MAESTRE J,IPARRAGUIRRE-TORRES I,et al. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature[J]. Renewable and Sustainable Energy Reviews,2018,82:3924-3945. [27] 张月. 硝酸盐基纳米复合材料的制备及储热机理研究[D]. 西宁:中国科学院大学(中国科学院青海盐湖研究所),2021. ZHANG Yue. Preparation and thermal storage mechanism sdudy of nitrate-based nanocomposite materials[D]. Xining:University of Chinese Academy of Sciences(Qinghai Institute of Salt Lakes,Chinese Academy of Sciences),2021. [28] 艾文明. 碳酸盐纳米流体的制备及其热物性研究[D]. 北京:北京工业大学,2019. AI Wenming. Preparation and thermal properties study of carbonate-based nanofluids[D]. Beijing:Beijing University of Technology,2019. [29] 任曼飞. 高温传热蓄热介质三元碳酸熔盐的改性[D]. 天津:天津大学,2018. REN Manfei. Modification of ternary carbonate molten salt as high-temperature heat transfer and thermal storage medium[D]. Tianjin:Tianjin University,2018. [30] GROSU Y,UDAYASHANKAR N,BONDARCHUK O,et al. Unexpected effect of nanoparticles doping on the corrosivity of molten nitrate salt for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2018,178:91-97. [31] PIQUOT J,NITHIYANANTHAM U,GROSU Y,et al. Spray-graphitization as a protection method against corrosion by molten nitrate salts and molten salts based nanofluids for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells,2019,200:110024. [32] CAMACHO I,CHEN Q,GONZÁLEZ-FERNÁNDEZ L,et al. On the anticorrosion mechanism of molten salts based nanofluids[J]. Solar Energy Materials and Solar Cells,2022,234:111424. [33] XU P,TANG X,YAO S,et al. Effect of Y2O3 addition on microstructure of Ni-based alloy+Y2O3/substrate laser clad[J]. Journal of Materials Processing Technology,2008,208(1-3):549-555. [34] 于萍,王亚权. 添加0.1 mass%Y的K38G高温合金1 000℃恒温氧化行为[J]. 腐蚀科学与防护技术,2007,19(3):189-191. YU Ping,WANG Yaquan. Oxidation behavior of K38G high-temperature alloy containing 0.1 mass% Y at 1000℃[J]. Corrosion Science and Protection Technology,2007,19(3):189-191. [35] WANG F,LOU H,BAI L. Magnetron sputtered CoCrAlY coatings on superalloy IN738[J]. Chinese Journal of Metal Science Technology,1990,6:61-64. [36] 周嘏玥. 316不锈钢在硝酸嫁盐中的腐蚀行为研究[D]. 西安:西安科技大学,2017. ZHOU Guyue. Study on the corrosion behavior of 316 stainless steel in nitric acid-salt mixture[D]. Xi’an:Xi’an University of Science and Technology,2017. [37] 朱明,周嘏玥,张慧慧. 316不锈钢在添加微量稀土元素硝酸熔盐中腐蚀行为研究[J]. 中国腐蚀与防护学报,2017,37(1):16-22. ZHU Ming,ZHOU Guyue,ZHANG Huihui. Study on the corrosion behavior of 316 stainless steel in nitric acid molten salt with trace amounts of rare earth elements[J]. Journal of Chinese Society for Corrosion and Protection,2017,37(1):16-22. [38] 马宏芳. Inconel625合金在氯化物熔盐中腐蚀行为研究[D]. 西安:西安科技大学,2015. MA Hongfang. Study on the corrosion behavior of Inconel 625 alloy in chloride molten salt[D]. Xi’an:Xi’an University of Science and Technology,2015. [39] 李晓丽. 稀土Y对GH3535高温合金微观结构和抗高温腐蚀性能的影响[D]. 上海:中国科学院研究生院(上海应用物理研究所),2015. LI Xiaoli. The influence of rare earth Y on the microstructure and high-temperature corrosion resistance of GH3535 superalloy[D]. Shanghai:Graduate University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics),2015. [40] OU Y,WANG H,OUYANG X,et al. Recent advances and strategies for high-performance coatings[J]. Progress in Materials Science,2023,136:101125. [41] 梅海峰,冯志文,刘亚,等. 热浸镀铝对316L不锈钢表面组织和抗高温氧化性的影响[J]. 兵器材料科学与工程,2021,44(5):33-37. MEI Haifeng,FENG Zhiwen,LIU Ya,et al. The influence of hot-dip aluminizing on the surface microstructure and high-temperature oxidation resistance of 316L stainless steel[J]. Ordnance Material Science and Engineering,2021,44(5):33-37. [42] 姜峰,于长军,索忠源,等. 304不锈钢热浸镀铝抗高温氧化性研究[J]. 热加工工艺,2019,48(20):119-121. JIANG Feng,YU Changjun,SUO Zhongyuan,et al. Study on the high-temperature oxidation resistance of 304 stainless steel with hot-dip aluminum coating[J]. Hot Working Technology,2019,48(20):119-121. [43] 赵霞,徐家文,孙永鑫. 0Cr18Ni9Ti奥氏体不锈钢热浸镀铝层的抗高温氧化性能[J]. 金属热处理,2009,34(3):76-79. ZHAO Xia,XU Jiawen,SUN Yongxin. High-temperature oxidation resistance of hot-dip aluminum coating on 0Cr18Ni9Ti austenitic stainless steel[J]. Heat Treatment of Metals,2009,34(3):76-79. [44] 杨世伟,李莉,李里,等. 不锈钢热浸镀铝抗高温氧化性能研究[J]. 金属热处理学报,2002(4):51-53,74. YANG Shiwei,LI Li,LI Li,et al. Study on high-temperature oxidation resistance of stainless steel with hot-dip aluminum coating[J]. Journal of Heat Treatment of Metals,2002(4):51-53,74. [45] 侯书信,李莉,杨世伟. 不锈钢热浸镀铝抗高温氧化腐蚀性能的研究[J]. 应用科技,2002(4):9-12. HOU Shuxin,LI Li,YANG Shiwei. Study on high-temperature oxidation and corrosion resistance of stainless steel with hot-dip aluminum coating[J]. Applied Science and Technology,2002(4):9-12. [46] 曹畅. 1Cr13不锈钢渗铝工艺及其在熔盐中的腐蚀行为研究[D]. 西安:长安大学,2016. CAO Chang. Study on aluminum infiltration process of 1Cr13 stainless steel and its corrosion behavior in molten salt[D]. Xi’an:Chang’an University,2016. [47] SIVAKUMAR R,RAO E J. An investigation of pack-aluminide coating on steel[J]. Oxidation of Metals,1982,17(5):391-405. [48] HAYNES J A,ARMSTRONG B L,KUMAR D,et al. Oxidation of slurry aluminide coatings on cast stainless steel alloy CF8C-Plus at 800℃ in water vapor[J]. Oxidation of Metals,2013,80(3):363-387. [49] BATES B L,WANG Y Q,ZHANG Y,et al. Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels[J]. Surface and Coatings Technology,2009,204(6-7):766-770. [50] 罗婧. 光热电站中316L不锈钢在碳酸熔盐中的腐蚀及FeAl防护涂层研究[D]. 合肥:中国科学技术大学,2022. LUO Jing. Study on corrosion of 316L stainless steel in carbonate molten salt and FeAl protective coating in concentrated solar power plants[D]. Hefei:University of Science and Technology of China,2022. [51] LUO J,LIU H H,LI N,et al. Robust corrosion performance of cold sprayed aluminide coating in ternary molten carbonate salt for concentrated solar power plants[J]. Solar Energy Materials and Solar Cells,2022,237:111573. [52] DORCHEH A S,GALETZ M C. Slurry aluminizing:A solution for molten nitrate salt corrosion in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells,2016,146:8-15. [53] AGÜERO A,AUDIGIÉ P,RODRÍGUEZ S,et al. Protective coatings for high temperature molten salt heat storage systems in solar concentration power plants[C]// AIP conference proceedings. AIP Publishing,2018:1-7. [54] ENCINAS-SÁNCHEZ V,BATUECAS E,MACÍAS-GARCÍA A,et al. Corrosion resistance of protective coatings against molten nitrate salts for thermal energy storage and their environmental impact in CSP technology[J]. Solar Energy,2018,176:688-697. [55] JIANG S M,XU C Z,LI H Q,et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I:Microstructure evolution[J]. Corrosion Science,2010,52(5):1746-1752. [56] JIANG S M,LI H Q,MA J,et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II:Oxidation and hot corrosion[J]. Corrosion Science,2010,52(7):2316-2322. [57] BAO Z B,WANG Q M,LI W Z,et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy[J]. Corrosion Science,2009,51(4):860-867. [58] GUO M H,WANG Q M,GONG J,et al. Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques[J]. Corrosion Science,2006,48(9):2750-2764. [59] GURRAPPA I. Identification of hot corrosion resistant MCrAlY based bond coatings for gas turbine engine applications[J]. Surface and Coatings Technology,2001,139(2-3):272-283. [60] GOMEZ-VIDAL J C,NOEL J,WEBER J. Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications[J]. Solar Energy Materials and Solar Cells,2016,157:517-525. [61] GOMEZ-VIDAL J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications[J]. npj Materials Degradation,2017,1(1):1-9. [62] 张林伟,王鲁,王全胜,等. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程,2016,44(11):45-50. ZHANG Linwei,WANG Lu,WANG Quansheng,et al. Thermal corrosion behavior of cold-sprayed CoNiCrAlY coating in Na2SO4 molten salt[J]. Materials Engineering,2016,44(11):45-50. [63] 张宏建. 304不锈钢表面激光熔覆MCrAlY涂层的组织及高温氧化性能研究[D]. 太原:中北大学,2020. ZHANG Hongjian. Study on microstructure and high temperature oxidation performance of laser cladded MCrAlY coating on 304 stainless steel surface[D]. Taiyuan:North University,2020. [64] LIU S B,LI W,FU L B,et al. Oxidation behaviour of NiCoCrAlYHfZr coating on a fourth generation single crystal superalloy[J]. Corrosion Science,2021,187:109522. [65] 刘书彬. 改性MCrAlY(M=Ni,NiCo)涂层的制备及性能研究[D]. 合肥:中国科学技术大学,2021. LIU Shubin. Preparation and performance study of modified MCrAlY (M = Ni,NiCo) coatings[D]. Hefei:University of Science and Technology of China,2021. [66] LIU S B,LI W,SUN J,et al. Preparation and oxidation behaviour of NiCrAlYSc coatings on a Ni-based single crystal superalloy[J]. Corrosion Science,2020,171:108703. [67] GUO H,WANG D,PENG H,et al. Effect of Sm,Gd,Yb,Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200℃[J]. Corrosion Science,2014,78:369-377. [68] HAN Y J,ZHU Z Y,LI X Q,et al. Effects of vacuum pre-oxidation process on thermally-grown oxides layer of CoCrAlY high temperature corrosion resistance coating[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3305-3314. [69] CHEN R,GONG X,WANG Y,et al. Microstructure and oxidation behaviour of plasma-sprayed NiCoCrAlY coatings with and without Ta on Ti44Al6Nb1Cr alloys[J]. Corrosion Science,2018,136:244-254. [70] PINT B A,HAYNES J A,BESMANN T M. Effect of Hf and Y alloy additions on aluminide coating performance[J]. Surface and Coatings Technology,2010,204(20):3287-3293. [71] JIANG S M,PENG X,BAO Z B,et al. Preparation and hot corrosion behaviour of a MCrAlY+AlSiY composite coating[J]. Corrosion Science,2008,50(11):3213-3220. [72] LI T,LI Y,LI W,et al. Cyclic oxidation behavior of Pt modified NiCoCrAlYHfZr+AlNiY coating on a Ni-based single crystal superalloy[J]. Vacuum,2023,212:112025. [73] LI S M,FU L B,ZHANG W L,et al. Formation process and oxidation behavior of MCrAlY+AlSiY composite coatings on a Ni-based superalloy[J]. Journal of Materials Science & Technology,2022,120:65-77. [74] KONDAIAH P,PITCHUMANI R. Fractal textured surfaces for high temperature corrosion mitigation in molten salts[J]. Solar Energy Materials and Solar Cells,2021,230:111281. [75] KONDAIAH P,PITCHUMANI R. Fractal coatings of Ni and NiYSZ for high-temperature corrosion mitigation in solar salt[J]. Corrosion Science,2022,201:110283. [76] KONDAIAH P,PITCHUMANI R. Novel textured surfaces for superior corrosion mitigation in molten carbonate salts for concentrating solar power[J]. Renewable and Sustainable Energy Reviews,2022,170:112961. [77] GROSU Y,NITHIYANANTHAM U,ZAKI A,et al. A simple method for the inhibition of the corrosion of carbon steel by molten nitrate salt for thermal storage in concentrating solar power applications[J]. npj Materials Degradation,2018,2(1):2-7. [78] GONZALEZ M,NITHIYANANTHAM U,CARBó-ARGIBAY E,et al. Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power[J]. Solar Energy Materials and Solar Cells,2019,203:110172. [79] XU Y T,XIA T D,WANG W P,et al. Hot corrosion failure mechanism of graphite materials in molten solar salt[J]. Solar Energy Materials and Solar Cells,2015,132:260-266. [80] GONZALEZ M,NITHIYANANTHAM U,CARBO-ARGIBAY E,et al. Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power[J]. Solar Energy Materials and Solar Cells,2019,203:110172. [81] GROSU Y,ANAGNOSTOPOULOS A,NAVARRO M E,et al. Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2COx3 salt through graphitization of construction materials for concentrated solar power[J]. Solar Energy Materials and Solar Cells,2020,215:110650. [82] GONZÁLEZ-FERNÁNDEZ L,SERRANO Á,PALOMO E,et al. Nanoparticle-based anticorrosion coatings for molten salts applications[J]. Journal of Energy Storage,2023,58:106374. [83] KASSIM S A,JIN A T,SEMAN A A,et al. High temperature corrosion of Hastelloy C22 in molten alkali salts:The effect of pre-oxidation treatment[J]. Corrosion Science,2020,173:108761. [84] GOMEZ-VIDAL J,FERNANDEZ A,TIRAWAT R,et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I:Pre-oxidation treatment and isothermal corrosion tests[J]. Solar Energy Materials and Solar Cells,2017,166:222-233. [85] GOMEZ-VIDAL J C,FERNANDEZ A,TIRAWAT R,et al. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II:Electrochemical impedance spectroscopy under thermal cycling conditions[J]. Solar Energy Materials and Solar Cells,2017,166:234-245. [86] FERNÁNDEZ A,REY A,LASANTA I,et al. Corrosion of alumina-forming austenitic steel in molten nitrate salts by gravimetric analysis and impedance spectroscopy[J]. Materials and Corrosion,2014,65(3):267-275. [87] FERNÁNDEZ Á G,PINEDA F,FUENTEALBA E,et al. Compatibility of alumina forming alloys with LiNO3-containing molten salts for solar thermal plants[J]. Journal of Energy Storage,2022,48:103988. [88] FERNÁNDEZ A G,PINEDA F,WALCZAK M,et al. Corrosion evaluation of alumina-forming alloys in carbonate molten salt for CSP plants[J]. Renewable Energy,2019,140:227-233. [89] HAMDY E,OLOVSJÖ J N,GEERS C. Perspectives on selected alloys in contact with eutectic melts for thermal storage:Nitrates,carbonates and chlorides[J]. Solar Energy,2021,224:1210-1221. [90] HAMDY E,STRACH M,OLOVSJÖ J N,et al. Differentiation in corrosion performance of alumina forming alloys in alkali carbonate melts[J]. Corrosion Science,2021,192:109857. [91] 喇培清,撒兴瑞,刘辉,等. 高铝310S耐热钢板材的焊接性能[J]. 钢铁研究学报,2014,26(2):34-40. LA Peiqing,SA Xingrui,LIU Hui,et al. Welding performance of high-aluminum 310S heat-resistant steel plates[J]. Journal of Iron and Steel Research,2014,26(2):34-40. [92] 喇培清,孟倩,姚亮,等. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报,2013,49(6):739-744. LA Peiqing,MENG Qian,YAO Liang,et al. Influence of Al element on microstructure and mechanical properties of hot-rolled 316L stainless steel[J]. Acta Metallurgica Sinica,2013,49(6):739-744. |
| [1] | 雒晓涛, 张国栋, 甘雨禾, 许康威, 姚建洮, 陈令杰, 李长久. 大气等离子喷涂Cu-Ni20Cr4B双金属防生物污损涂层的显微结构与性能[J]. 机械工程学报, 2025, 61(10): 90-99. |
| [2] | 刘博, 张志强, 康嘉杰, 徐连勇, 龚攀, 罗任植, 张天刚. 双相不锈钢CMT-P电弧等离子体传热行为研究[J]. 机械工程学报, 2025, 61(10): 128-140. |
| [3] | 程靖越, 姚海华, 赵万新, 杨延格, 王国红, 周正. Al0.6CoCrFeNiTi/TiC高熵合金熔覆层组织与摩擦磨损行为[J]. 机械工程学报, 2025, 61(10): 141-151. |
| [4] | 赵佳欣, 金国, 崔秀芳, 刘昌昊, 齐萌, 吴頔. 核用锆合金表面CrAlX(X=Nb、Mo)涂层的硼锂水腐蚀特性及摩擦学性能研究[J]. 机械工程学报, 2025, 61(10): 178-190. |
| [5] | 于征磊, 高德龙, 徐泽洲, 郭云婷, 牛士超, 韩志武, 张志辉, 任露泉. 扫描速度对激光粉末床熔融NiTi合金耐腐蚀性能的影响[J]. 机械工程学报, 2025, 61(9): 101-111. |
| [6] | 李涌泉, 郝清锐, 梁国栋, 王存喜, 高阳. TiAl合金表面Al-Y渗层的组织及高温抗氧化性能[J]. 机械工程学报, 2025, 61(4): 137-146. |
| [7] | 韩冰源, 高祥涵, 杜文博, 李洪亮, 崔方方, 吴海东, 朱胜. 不同温度下铝合金表面等离子喷涂镍基涂层的摩擦学性能研究[J]. 机械工程学报, 2024, 60(24): 177-187. |
| [8] | 王琳婷, 朱丽娜, 李润杰, 康嘉杰, 卢晓亮. 冷喷涂和超音速火焰喷涂FeCoCrNiMn高熵合金涂层的耐腐蚀性能对比研究[J]. 机械工程学报, 2024, 60(14): 117-125. |
| [9] | 吴亚茹, 张振雨, 张扬泽, 吴甲民, 田冲, 黄海露, 林鑫, 史玉升. 造孔剂种类对数字光处理成形多孔Si3N4陶瓷性能的影响[J]. 机械工程学报, 2024, 60(11): 273-282. |
| [10] | 王伟志, 马国政, 韩珩, 李洋, 周雳, 赵海朝, 许建峰, 郭伟玲, 王海斗. 激光熔覆陶瓷涂层研究现状与展望[J]. 机械工程学报, 2023, 59(7): 92-109. |
| [11] | 牟泓霖, 蔡志海, 马国政, 朱咸勇, 周雳, 何鹏飞, 刘明, 王海斗. 热喷涂宽温域耐磨自润滑涂层研究现状与展望[J]. 机械工程学报, 2023, 59(7): 139-155. |
| [12] | 柯文超, 从保强, 祁泽武, 敖三三, 庞博文, 郭伟, 彭倍, 曾志. NiTi形状记忆合金电弧熔融涂覆及微连接机理[J]. 机械工程学报, 2022, 58(2): 176-184. |
| [13] | 赵航, 高畅, 伍晓宇, 徐斌, 雷建国. 超声辅助电火花粉末沉积WC-Ni金属陶瓷涂层的微观结构及摩擦学性能[J]. 机械工程学报, 2021, 57(23): 252-261. |
| [14] | 李云峰, 石岩. 激光熔覆耐磨耐冲击复合涂层组织与性能研究[J]. 机械工程学报, 2021, 57(12): 237-246. |
| [15] | 程涛涛, 王志平, 戴士杰, 丁坤英, 马祥. 航空发动机陶瓷基高温封严涂层研究进展[J]. 机械工程学报, 2021, 57(10): 126-136,147. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
