机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 337-353.doi: 10.3901/JME.2024.03.337
袁菘, 郭晓光, 金洙吉, 康仁科, 郭东明
收稿日期:
2023-03-08
修回日期:
2023-08-13
出版日期:
2024-02-05
发布日期:
2024-04-28
通讯作者:
郭晓光,女,1976年出生,博士,教授,博士研究生导师。主要研究方向为难加工材料高效加工技术、加工过程建模与仿真、超精密加工技术与理论。E-mail:guoxg@dlut.edu.cn
作者简介:
袁菘,男, 1994 年出生,博士研究生。主要研究方向为硬脆材料的超精密加工技术及理论,如研磨、化学机械抛光和 ReaxFF 分子动力学模拟。E-mail:yuansong@mail.dlut.edu.cn;金洙吉,男, 1967 年出生,博士,教授,博士研究生导师。主要研究方向为难加工材料高效加工技术、半导体制造技术与设备。E-mail:kimsg@dlut.edu.cn;康仁科,男, 1962 年出生,博士,教授,博士研究生导师。主要研究方向为超精密加工与特种加工技术、半导体制造技术与设备。E-mail:kangrk@dlut.edu.cn;郭东明,男, 1959 年出生,博士,教授,博士研究生导师,中国工程院院士。主要研究方向为难加工材料高效加工技术、超精密加工与特种加工技术、半导体制造技术与设备、超精密加工技术与理论。E-mail:guodm@dlut.edu.cn
基金资助:
YUAN Song, GUO Xiaoguang, JIN Zhuji, KANG Renke, GUO Dongming
Received:
2023-03-08
Revised:
2023-08-13
Online:
2024-02-05
Published:
2024-04-28
摘要: 随着电子器件向高频高压、大功率方向发展,对半导体器材的性能提出了更高的要求。单晶金刚石具有高热导、耐高温、超宽禁带、击穿电压高等特性,被视为终极半导体材料。若要充分发挥金刚石的性能,其表面需要具有超光滑和近乎无损伤的表面。然而,金刚石不仅硬度大、化学性质稳定、难去除,而且脆性大、断裂性韧性低、极易产生加工损伤,这严重制约了金刚石在半导体领域的应用。有关金刚石高效超低损伤的加工机理和工艺,国内外学者展开了大量研究。但到目前为止,并没有一套适合于金刚石高效超低损伤的加工理论和工艺。在介绍了金刚石现有加工方法及其优缺点的基础上,概述了金刚石加工工艺的研究现状,并从实验表征和模拟计算两方面系统地总结了有关金刚石高效超低损伤加工机理以及相关的工艺研究进展,最后分析了目前实现金刚石高效超低损伤加工面临的问题、难点及未来发展趋势,为今后金刚石半导体器件的制造技术及理论提供借鉴。分析表明,机理方面,实验表征与模拟计算相结合是获得更多的动态原子细节信息的有效方式,是未来在原子尺度阐明加工机理的发展方向。工艺方面,化学机械抛光方法可以用于平坦化大尺寸材料加工,同时也可以获得具有超光滑超低损伤表面的金刚石,但去除率低是限制该方法应用的瓶颈问题,通过金刚石磨粒+强氧化剂+外部能场辅助的加工方法是实现金刚石高效超低损伤加工的发展方向。
中图分类号:
袁菘, 郭晓光, 金洙吉, 康仁科, 郭东明. 金刚石高效超低损伤加工机理与工艺研究现状[J]. 机械工程学报, 2024, 60(3): 337-353.
YUAN Song, GUO Xiaoguang, JIN Zhuji, KANG Renke, GUO Dongming. A Review of High-efficiency and Ultra-low Damage Processing Mechanism and Technology of Diamond[J]. Journal of Mechanical Engineering, 2024, 60(3): 337-353.
[1] 李军男,曲研,潘长波,等.超宽禁带半导体材料的机遇与挑战[J].新材料产业, 2018(9):60-65. LI Junnan, QU Yan, PAN Changbo, et al. Opportunities and challenges of ultra-wide bandgap semiconductor materials[J]. Advanced Materials Industry, 2018(9):60-65. [2] 蔡蔚,孙东阳,周铭浩,等.第三代宽禁带功率半导体及应用发展现状[J].科技导报, 2021, 39(14):42-55 CAI Wei, SUN Dongyang, ZHOU Minghao, et al. Third generation wide bandgap power semiconductors and their applications[J]. Science & Technology Review, 2021, 39(14):42-55. [3] THUMM M. Progress on gyrotrons for ITER and future thermonuclear fusion reactors[J]. IEEE Transactions on Plasma Science, 2011, 39(4):971-979. [4] AWSCHALOM D D, EPSTEIN R, HANSON R. The diamond age of spintronics[J]. Scientific American, 2007, 297(4):84-91. [5] 王凡生,刘繁,汪建华,等.金刚石半导体器件的研究进展[J].武汉工程大学学报, 2020(7):1-11. WANG Fansheng, LIU Fan, WANG Jianhua, et al. Review of diamond semiconductor devices[J]. Journal of Wuhan Institute of Technology, 2020(7):1-11. [6] MALSHE A P, PARK B S, BROWN W D, et al. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates[J]. Diamond & Related Materials, 1999, 8(7):1198-1213. [7] KUBOTA A, NAGAE S, TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution[J]. Diamond and Related Materials, 2016, 70:39-45. [8] KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique[J]. Diamond and Related Materials, 2012, 24:59-62. [9] ZHOU L, HUANG S T, XU L F. An efficient super-high speed polishing method for CVD diamond films[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(6):698-704. [10] XU H, ZANG J, YANG G, et al. An efficient titanium-containing corundum wheel for grinding CVD diamond films[J]. Diamond and Related Materials, 2018, 84:119-126. [11] XU H, ZANG J, YANG G, et al. High-efficiency grinding CVD diamond films by Fe-Ce containing corundum grinding wheels[J]. Diamond and Related Materials, 2017, 80:5-13. [12] SHI S, JIN Z, ZHONG X, et al. Processing and mechanism of dynamic friction polishing diamond using manganese-based alloy[J]. Materials and Manufacturing Processes, 2015, 30(5):654-660. [13] 苑泽伟. CVD金刚石膜摩擦化学抛光技术研究[D].大连:大连理工大学, 2008. YUAN Zewei. Study on tribochemical polishing technique of CVD diamond film[D]. Dalian:Dalian University of Technology, 2008. [14] 林佳志.摩擦化学抛光单晶金刚石的工艺研究[D].大连:大连理工大学, 2015. LIN Jiazhi. Research on dynamic friction polishing technology for single crystal diamond[D]. Dalian:Dalian University of Technology, 2015. [15] 钟秀红.摩擦化学抛光金刚石用WMoCr抛光盘的研制[D].大连:大连理工大学, 2015. ZHONG Xiuhong. Development of WMoCr polishing plate used in dynamic friction polishing of diamond[D]. Dalian:Dalian University of Technology, 2015. [16] 马兴伟.高速摩擦抛光金刚石膜用FeAl基合金抛光盘的制备及性能研究[D].大连:大连理工大学, 2011. MA Xingwei. Study on the fabrication and properties of FeAl based alloy polishing plate for dynamic friction polishing of diamond film[D]. Dalian:Dalian University of Technology, 2011. [17] TATSUMI N, HARANO K, ITO T, et al. Polishing mechanism and surface damage analysis of type IIa single crystal diamond processed by mechanical and chemical polishing methods[J]. Diamond and Related Materials, 2016, 63:80-85. [18] ZHENG Y, YE H, THORNTON R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing[J]. Diamond and Related Materials, 2020, 101:107600. [19] KUBOTA A, NAGAE S, MOTOYAMA S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate[J]. Diamond and Related Materials, 2015, 60:75-80. [20] THOMAS E L H, MANDAL S, BROUSSEAU E B, et al. Silica based polishing of {100} and {111} single crystal diamond[J]. Science and Technology of Advanced Materials, 2014, 15(3):35013. [21] THOMAS E L H, NELSON G W, MANDAL S, et al. Chemical mechanical polishing of thin film diamond[J]. Carbon, 2014, 68:473-479. [22] LIN Y, LU J, TONG R, et al. Surface damage of single-crystal diamond (100) processed based on a sol-gel polishing tool[J]. Diamond and Related Materials, 2018, 83:46-53. [23] 徐西鹏,刘娟,于怡青,等.凝胶结合剂磨粒工具制备及其磨抛性能研究[J].机械工程学报. 2013, 49(19):156-162. XU Xipeng, LIU Juan, YU Yiqing, et al. Fabrication and application of Gel-bonded abrasive tools for grinding and polishing tools[J]. Journal of Mechanical Engineering, 2013, 49:156-162. [24] 苑泽伟.利用化学和机械协同作用的CVD金刚石抛光机理与技术[D].大连:大连理工大学, 2013. YUAN Zewei. Mechanism and technology for polishing CVD diamond with chemical and mechanical synergistic effects[D]. Dalian:Dalian University of Technology, 2013. [25] 李强.单晶金刚石的研磨与化学机械抛光工艺[D].大连:大连理工大学, 2013. LI Qiang. Processing technique for single crystal diamond with mechanical lapping and chemical mechanical polishing[D]. Dalian:Dalian University of Technology, 2013. [26] MANDAL S, THOMAS E L H, GINES L, et al. Redox agent enhanced chemical mechanical polishing of thin film diamond[J]. Carbon, 2018, 130:25-30. [27] LIAO L, ZHANG Z, MENG F, et al. A novel slurry for chemical mechanical polishing of single crystal diamond[J]. Applied Surface Science, 2021, 564:150431. [28] HARRISON J A, BRENNER D W. Simulated tribochemistry:An atomic-scale view of the wear of diamond[J]. Journal of the American Chemical Society, 1994, 116(23):10399-10402. [29] ZILIBOTTI G, RIGHI M C. Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage[J]. Langmuir, 2011, 27(11):6862-6867. [30] 郭晓光,刘涛,翟昌恒,等.过渡金属作用下的金刚石石墨化机理研究[J].机械工程学报, 2016, 52(20):23-29. GUO Xiaoguang, LIU Tao, ZHAI Changheng, et al. Study on the mechanism of diamond graphite with the action of transition metals[J]. Journal of Mechanical Engineering, 2016, 52(20):23-29. [31] 郭晓光,翟昌恒,金洙吉,等.铁基作用下的金刚石石墨化研究[J].机械工程学报, 2015, 51(17):162-168. GUO Xiaoguang, ZHAI Changheng, JIN Zhuji, et al. The study of diamond graphitization under the action of iron-based catalyst[J]. Journal of Mechanical Engineering, 2015, 51(17):162-168. [32] WANG Y, XU J, OOTANI Y, et al. Tight-binding quantum chemical molecular dynamics study on the friction and wear processes of diamond-like carbon coatings:Effect of tensile stress[J]. ACS Applied Materials & Interfaces, 2017, 9(39):34396-34404. [33] PEGUIRON A,MORAS G, WALTER M,et al. Activation and mechanochemical breaking of C-C bonds initiate wear of diamond (110) surfaces in contact with silica[J]. Carbon, 2016, 98:474-483. [34] PASTEWKA L, MOSER S, GUMBSCH P, et al. Anisotropic mechanical amorphization drives wear in diamond[J]. Nature Materials, 2011, 10(1):34-38. [35] ZONG W J, CHENG X, ZHANG J J. Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal[J]. Carbon, 2016, 99:186-194. [36] YANG N, ZONG W J, LI Z, et al. Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction[J]. Computational Materials Science, 2014, 95:551-556. [37] LIU H,ZONG W J,CHENG X. Origins for the anisotropy of the friction force of diamond sliding on diamond[J]. Tribology International, 2020, 148:106298. [38] CHENG X, ZONG W J. Anisotropic evolution of damaged carbons of a mechanically polished diamond surface in low-temperature annealing[J]. Diamond and Related Materials, 2018, 90:7-17. [39] NGUYEN V, FANG T. Phase transformation and subsurface damage formation in the ultrafine machining process of a diamond substrate through atomistic simulation[J]. Scientific Reports, 2021, 11:17795. [40] KONICEK A R, GRIERSON D S, SUMANT A V, et al. Influence of surface passivation on the friction and wear behavior of ultra nanocrystalline diamond and tetrahedral amorphous carbon thin films[J]. Physical Review B, 2012, 85(15):1-13. [41] KUMAR N, SHARMA N, DASH S, et al. Tribological properties of ultra-nanocrystalline diamond films in various test atmosphere[J]. Tribology International, 2011, 44(12):2042-2049. [42] DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41):9396-9409. [43] JEON B, SANKARANARAYANAN S K R S, VAN D A C T, et al. Reactive molecular dynamics study of chloride ion interaction with copper oxide surfaces in aqueous media[J]. ACS Applied Materials & Interfaces, 2012, 4(3):1225-1232. [44] ASSOWE O, POLITANO O, VIGNAL V, et al. Reactive molecular dynamics of the initial oxidation stages of Ni (111) in pure water:Effect of an applied electric field[J]. J Phys Chem A, 2012, 116(48):11796-11805. [45] RAJU M, KIM S, DUIN A C T, et al. ReaxFF reactive force field study of the dissociation of water on titania surfaces[J]. The Journal of Physical Chemistry C, 2013, 117(20):10558-10572. [46] RUSSO M F, LI R, MENCH M, et al. Molecular dynamic simulation of aluminum-water reactions using the ReaxFF reactive force field[J]. International Journal of Hydrogen Energy, 2011, 36(10):5828-5835. [47] WEN J, MA T, ZHANG W, et al. Surface orientation and temperature effects on the interaction of silicon with water:Molecular dynamics simulations using ReaxFF reactive force field[J]. J Phys Chem A, 2017, 121(3):587-594. [48] DORMOHAMMADI H, PANG Q,ÁRNADÓTTIR L, et al. Atomistic simulation of initial stages of iron corrosion in pure water using reactive molecular dynamics[J]. Computational Materials Science, 2018, 145:126-133. [49] CHEN L, WEN J, ZHANG P, et al. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions[J]. Nature Communications, 2018, 9(1):1542. [50] WEN J, MA T, ZHANG W, et al. Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2:ReaxFF reactive molecular dynamics simulations[J]. Computational Materials Science, 2017, 131:230-238. [51] WEN J, MA T, ZHANG W, et al. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment[J]. Applied Surface Science, 2016, 390:216-223. [52] GUO X, WANG X, JIN Z, et al. Atomistic mechanisms of Cu CMP in aqueous H2O2:Molecular dynamics simulations using ReaxFF reactive force field[J]. Computational Materials Science, 2018, 155:476-482. [53] GUO X, YUAN S, GOU Y, et al. Study on chemical effects of H2O2 and glycine in the Copper CMP process using ReaxFF MD[J]. Applied Surface Science, 2020, 508:145262. [54] GUO X, YUAN S, HUANG J, et al. Effects of pressure and slurry on removal mechanism during the chemical mechanical polishing of quartz glass using ReaxFF MD[J]. Applied Surface Science, 2020:144610. [55] WANG M, DUAN F, MU X. Effect of surface silanol groups on friction and wear between amorphous silica surfaces[J]. Langmuir, 2019, 35(16):5463-5470. [56] YUE D, MA T, HU Y, et al. Tribochemical mechanism of amorphous silica asperities in aqueous environment:A reactive molecular dynamics study[J]. Langmuir, 2015, 31(4):1429-1436. [57] LI X, WANG A, LEE K. Atomistic understanding on friction behavior of amorphous carbon films induced by surface hydrogenated modification[J]. Tribology International, 2019, 136:446-454. [58] LI X, WANG A, LEE K. Fundamental understanding on low-friction mechanisms at amorphous carbon interface from reactive molecular dynamics simulation[J]. Carbon, 2020, 170:621-629. [59] LI X, WANG A, LEE K. Mechanism of contact pressure-induced friction at the amorphous carbon/alpha olefin interface[J]. Computational Materials, 2018, 4(1):1-9. [60] LI X, WANG A, LEE K. Insights on low-friction mechanism of amorphous carbon films from reactive molecular dynamics study[J]. Tribology International, 2019, 131:567-578. [61] YUAN S, GUO X, LU M, et al. Diamond nanoscale surface processing and tribochemical wear mechanism[J]. Diamond and Related Materials, 2019, 94:8-13. [62] YUAN S, GUO X, HUANG J, et al. Sub-nanoscale polishing of single crystal diamond (100) and the chemical behavior of nanoparticles during the polishing process[J]. Diamond and Related Materials, 2019, 100:107528. [63] YUAN S, GUO X, HUANG J, et al. Insight into the mechanism of low friction and wear during the chemical mechanical polishing process of diamond:A reactive molecular dynamics simulation[J]. Tribology International, 2020, 148:106308. [64] YUAN S, GUO X, MAO Q, et al. Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations[J]. International Journal of Mechanical Sciences, 2021, 191:106096. [65] YUAN S, GUO X, ZHANG S, et al. Influence mechanism of defects on the subsurface damage and structural evolution of diamond in CMP process[J]. Applied Surface Science, 2021, 566:150638. [66] TOKAREV V N, WILSON J I B, JUBBER M G, et al. Modelling of self-limiting laser ablation of rough surfaces:application to the polishing of diamond films[J]. Diamond and Related Materials. 1995, 4(3):169-176. [67] SINGH R K, LEE D G. Excimer laser-assisted planarization of thick diamond films[J]. Journal of Electronic Materials. 1996, 25(1):137-142. [68] ROTHSCHILD M, ARNONE C, EHRLICH D J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection[J]. Journal of Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 1986, 4(1):310-314. [69] GLOOR S, LÜTHY W, WEBER H P, et al. UV laser polishing of thick diamond films for IR windows[J]. Applied Surface Science, 1999, 138-139(1):135-139. [70] 黄树涛,姚英学,张宏志,等.金刚石膜的加工技术[J].新技术新工艺, 1996(1):13-14. HUANG Shutao, YAO Yingxue, ZHANG Hongzhi, et al. Processing technology of diamond film[J]. New Technology & New Process, 1996(1):13-14. [71] ZHAO T, GROGAN D F, BOVARD B G, et al. Diamond film polishing with argon and oxygen ion beams[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1990, 1325:142-151 [72] YOSHIDA A, DEGUCHI M, KITABATAKE M, et al. Atomic level smoothing of CVD diamond films by gas cluster ion beam etching[J]. Nuclear Instruments & Methods in Physics Research, 1996, 112(1-4):248-251. [73] HIRATA A, TOKURA H, YOSHIKAWA M. Smoothing of chemically vapour deposited diamond films by ion beam irradiation[J]. Thin Solid Films, 1992, 212(1):43-48. [74] WEIMA J A, ZAITSEV A M, JOB R, et al. Investigation of non-diamond carbon phases and optical centers in thermochemically polished polycrystalline CVD diamond films[J]. Journal of Solid State Electrochemistry, 2000, 4(8):425-434. [75] CHOS S K, JUNG S Y, KWEON S Y, et al. Surface characterization of diamond films polished by thermomechanical polishing method[J]. Thin Solid Films, 1996, 279(1-2):110-114. [76] LIANG Y, ZHENG Y, WEI J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction[J]. Diamond and Related Materials, 2021, 117:108461. [77] 史双佶.金刚石摩擦化学抛光用抛光盘制备及抛光机理研究[D].大连:大连理工大学, 2016. SHI Shuangji. Preparation and polishing mechanism research of polishing plate used for dynamic friction polishing diamond[D]. Dalian:Dalian University of Technology, 2016. [78] ZONG W, ZHANG J, LIU Y, et al. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement[J]. Applied Surface Science, 2014, 316:617-624. [79] YUAN Z, JIN Z, KANG R, et al. Tribochemical polishing CVD diamond film with FeNiCr alloy polishing plate prepared by MA-HPS technique[J]. Diamond and Related Materials, 2012, 21(1):50-57. [80] JIN Z, YUAN Z, KANG R et al. Fabrication and characterization of FeNiCr Matrix-TiC composite for polishing CVD diamond film[J]. Journal of Materials Science & Technology, 2009(3):319-324. [81] CHEN X, HSIA F, Alexander S, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs:A review of mechanisms and processes[J]. Carbon, 2022, 196:29-48. [82] 严朝辉,汪建华,满卫东,等. CVD金刚石厚膜的机械抛光研究[J].金刚石与磨料磨具工程, 2007(3):32-35. YAN Zhaohui, WANG Jianhua, MAN Weidong, et al. Study of mechanical polishing of CVD diamond thick films[J]. Diamond & Abrasives Engineering, 2007(3):32-35. [83] LIU H, ZONG W, CHENG X. Behaviors of carbon atoms induced by friction in mechanical polishing of diamond[J]. Computational Materials Science, 2021, 186:110069. [84] HAISMA J, VAN D K F J H M, SPIERINGS B, et al. Damage-free tribochemical polishing of diamond at room temperature:A finishing technology[J]. Precision Engineering, 1992, 14(1):20-27. [85] CHEN Yiqing. Polishing of diamond materials-mechanisms, modeling and implementation[M]. Berlin:Springer, 2013. [86] MI S, TOROS A, GRAZIOSI T, et al. Non-contact polishing of single crystal diamond by ion beam etching[J]. Diamond and Related Materials, 2019, 92:248-252. [87] BUCHKREMER H H, LONG C, WEISS H. ECR plasma polishing of CVD diamond films[J]. Diamond & Related Materials, 1996, 5(6-8):845-849. [88] GRODZINSKI P. Diamond technology:Production methods for diamond and gemStones[M]. 2nd ed. London:N.A.G. Press, 1953. [89] JIN S, GRAEBNER J E, KAMMLOTT G W, et al. Massive thinning of diamond films by a diffusion process[J]. Applied Physics Letters, 1992, 60(16):1948-1950. [90] IMOTO Y, YAN J. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions[J]. Applied Surface Science. 2017, 404:318-325. [91] JIN Z J, SHI S J, LIN J Z, et al. Preparation and performance of dynamic friction polishing plate for diamond film[J]. Materials and Manufacturing Processes, 2014, 29(1):20-26. [92] XU H, ZANG J, YANG G, et al. An efficient titanium-containing corundum wheel for grinding CVD diamond films[J]. Diamond and Related Materials, 2018, 84:119-126. [93] XU H, ZANG J, TIAN P, et al. Surface conversion reaction and high efficient grinding of CVD diamond films by chemically mechanical polishing[J]. Ceramics International, 2018, 44(17):21641-21647. [94] CUI Z, LI G, ZONG W. A polishing method for single crystal diamond (100) plane based on nano silica and nano nickel powder[J]. Diamond and Related Materials, 2019, 95:141-153. [95] LU Y, WANG B, MU Q, et al. Nanoscale smooth and damage-free polycrystalline diamond surface ground by coarse diamond grinding wheel[J]. Diamond and Related Materials, 2022, 125:108971. [96] 袁菘,郭晓光,金洙吉,等.金刚石化学机械抛光研究现状[J].表面技术, 2020, 49(4):11-22. YUAN Song, GUO Xiaoguang, JIN Zhuji, et al. Research status on chemical mechanical polishing of diamond[J]. Surface Technology, 2020, 49:11-22. [97] HITCHINER M P, WILKS E M, WILKS J. The polishing of diamond and diamond composite materials[J]. Wear, 1984, 94(1):103-120. [98] HARRIS D C. Materials for infrared windows and domes:Properties and performance[M]. Bellingham:SPIE, 1999. [99] HIRD J R, FIELD J E. A wear mechanism map for the diamond polishing process[J]. Wear, 2005, 258(1-4):18-25. [100] TSAI H Y, TING C J, CHOU C P. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition[J]. Diamond and Related Materials, 2007, 16(2):253-261. [101] DORONIN M A, POLYAKOV S N, KRAVCHUK K S, et al. Limits of single crystal diamond surface mechanical polishing[J]. Diamond and Related Materials, 2018, 87:149-155. [102] YANG N, ZONG W, LI Z, et al. Wear process of single crystal diamond affected by sliding velocity and contact pressure in mechanical polishing[J]. Diamond and Related Materials, 2015, 58:46-53. [103] THORNTON A G JW. The polishing of diamonds in the presence of oxidising agents[J]. Diamond Res., 1974, 39:39-42. [104] GUPTA B K, MALSHE A, BHUSHAN B, et al. Friction and wear properties of chemomechanically polished diamond films[J]. Journal of Tribology, 1994, 116(3):445. [105] KÜHNLE J, WEIS O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents[J]. Surface Science, 1995, 340(1):16-22. [106] CHENG C Y., TSAIT H Y., WU H, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films[J]. Diamond & Related Materials, 2005, 14:622-625. [107] JIN Z J, YUAN Z W, LI Q, et al. Tribological aspects of chemical mechanical polishing diamond surfaces[J]. Advanced Materials Research, 2011, 325:464-469. [108] 苑泽伟,金洙吉,李强,等. CVD金刚石化学机械抛光工艺研究[J].人工晶体学报, 2016, 45(1):73-79. YUAN Zewei, JIN Zhuji, LI Qiang, et al. Study on the chemical mechanical polishing technique of CVD diamond[J]. Journal of Synthetic Crystals, 2016, 45(1):73-79. [109] 薛洪明,金洙吉,史卓颖.单晶金刚石机械研磨与化学机械抛光工艺[J].纳米技术与精密工程, 2015, 13(2):102-107. XUE Hongming, JIN Zhuji, SHI Zhuoying. Mechanical lapping and chemical-mechanical polishing process for single crystal diamond[J]. Nanotechnology and Precision Engineering, 2015, 13:102-107. [110] WERRELL J M, MANDAL S, THOMAS E L H, et al. Effect of slurry composition on the chemical mechanical polishing of thin diamond films[J]. Science and Technology of Advanced Materials, 2017, 18(1):654-663. [111] YANG N, HUANG W, LEI D. Control of nanoscale material removal in diamond polishing by using iron at low temperature[J]. Journal of Materials Processing Technology, 2020, 278:116521. [112] YUAN Z W, JIN Z J, DONG B X, et al. Polishing of free-standing CVD diamond films by the combination of EDM and CMP[J]. Advanced Materials Research. 2008, 53-54:111-118. [113] KUBOTA A,MOTOYAMA S,TOUGE M. Development of an Ultra-finishing technique for single-crystal diamond substrate utilizing an iron tool in H2O2 solution[J]. Diamond and Related Materials, 2016, 64:177-183. [114] KIM Y, KANG S L. Novel CVD diamond-coated conditioner for improved performance in CMP processes[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6):565-568. [115] LIU N, YAMADA H, YOSHITAKA N, et al. Comparison of surface and subsurface damage of mosaic single-crystal diamond substrate processed by mechanical and plasma-assisted polishing[J]. Diamond and Related Materials, 2021, 119:108555. [116] LIU N, SUGIMOTO K, YOSHITAKA N, et al. Effects of polishing pressure and sliding speed on the material removal mechanism of single crystal diamond in plasma-assisted polishing[J]. Diamond and Related Materials, 2022, 124:108899. [117] KUBOTA A, NAGAE S, MOTOYAMA S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains[J]. Diamond and Related Materials, 2020, 101:107644. [118] YUAN Z, JIN Z, ZHANG Y, et al. Chemical mechanical polishing slurries for chemically vapor-deposited diamond films[J]. Journal of Manufacturing Science & Engineering, 2013, 135(4):41006. [119] 薛洪明.单晶金刚石CMP工艺及在刀具刃磨中的应用[D].大连:大连理工大学, 2015. XUE Hongming. Processing technique for single crystal diamond with chemical mechanical polishing and its application in diamond tool sharpening[D]. Dalian:Dalian University of Technology, 2015. [120] YUAN Z, JIN Z, LI Q, et al. Study on the Chemical Mechanical Polishing Technique of CVD Diamond[J]. Journal of Synthetic Crystals, 2016, 45(1):73-79. [121] YUAN S, GUO X, LI M, et al. An insight into polishing slurry for high quality and efficiency polishing of diamond[J]. Tribology International, 2022, 174:107789. [122] WATANABE J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials[J]. Diamond & Related Materials, 2013, 39(10):14-19. [123] TOUGE M, ANAN S, WADA S, et al. Atomic-scale planarization of single crystal diamond substrates by ultraviolet rays assisted machining[J]. Key Engineering Materials, 2010, 447-448:66-70. [124] KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54:269-275. [125] YANG H, JIN Z, NIU L, et al. Visible-light catalyzed assisted chemical mechanical polishing of single crystal diamond[J]. Diamond and Related Materials, 2022, 125:108982. [126] LIU W, XIONG Q, LU J, et al. Tribological behavior of single crystal diamond based on UV photocatalytic reaction[J]. Tribology International, 2022, 175:107806. [127] 郭晓光,袁菘,董志刚,等.金刚石晶片紫外光辅助化学机械抛光的加工装置及工艺:中国, 202110704669.9[P]. 2021-09-03. GUO Xiaoguang, YUAN Song, DONG Zhigang, et al. Machining device and technology of UV-assisted chemical mechanical polishing of diamond wafer:China, 202110704669.9[P]. 2021-09-03. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 王艳, 何顺, 陈奕璋, 姜晨, 钱兆峰, 陈浩毅. 超声空化辅助金刚石线锯切割单晶硅机理分析与试验验证[J]. 机械工程学报, 2024, 60(9): 114-126. |
[3] | 郝明武, 姚鹏, 周嘉斌, 黎月明, 梁士通, 褚东凯, 黄传真. 皮秒激光切向修整青铜结合剂金刚石砂轮的影响因素研究[J]. 机械工程学报, 2024, 60(9): 229-240. |
[4] | 李子清, 崔长彩, 卞素标, 李慧慧, 陆静, ORIOL Arteaga, 徐西鹏. 单晶金刚石衬底超精密加工损伤层无损测量与表征[J]. 机械工程学报, 2024, 60(4): 239-249. |
[5] | 都建标, 张强, 宗文俊. 硬脆及黑色金属材料的单点金刚石车削加工技术综述[J]. 机械工程学报, 2023, 59(7): 156-175. |
[6] | 陈磊, 刘阳钦, 唐川, 蒋翼隆, 石鹏飞, 钱林茂. 面向超精密加工的微观材料去除机理研究进展[J]. 机械工程学报, 2023, 59(23): 229-264. |
[7] | 郑雷, 孙晓晗, 吕冬明, 刘子文, 朱卓志, 董香龙, 韦文东. GFRP旋转超声振动套孔加工仿真及工艺研究[J]. 机械工程学报, 2023, 59(23): 391-400. |
[8] | 刘汉中, 张瑞涛, 宗文俊, 孙涛. 微圆弧金刚石刀具刃磨关键技术及应用[J]. 机械工程学报, 2023, 59(21): 34-42. |
[9] | 潘延安, 鲍岩, 冯嘉健, 殷森, 董志刚, 康仁科. 高比重钨合金超声椭圆振动切削去除机理研究[J]. 机械工程学报, 2023, 59(21): 65-74. |
[10] | 张健, 肖昂, 张澳, 刘俊艺, 张明军, 彭平. Ni-Cr钎料钎焊金刚石界面强化的第一性原理计算与试验研究[J]. 机械工程学报, 2023, 59(18): 228-238. |
[11] | 龙伟民, 刘大双, 吴爱萍, 钟素娟, 王德成. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响[J]. 机械工程学报, 2023, 59(12): 225-235. |
[12] | 毛雅梅, 黑鸿君, 高洁, 郑可, 于盛旺, 王垚. 钎焊金刚石研究进展及其工具的应用[J]. 机械工程学报, 2022, 58(4): 80-93. |
[13] | 黄家骏, 何铨鹏, 谢晋, 杨浩. 放电热与交变切削力耦合的金刚石磨粒修整研究[J]. 机械工程学报, 2022, 58(15): 144-151. |
[14] | 高尚, 李洪钢, 康仁科, 何宜伟, 朱祥龙. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报, 2021, 57(9): 213-232. |
[15] | 陈逢军, 陈海臻. 静电喷雾磨粒均布微结构磨具原位制备研究[J]. 机械工程学报, 2021, 57(7): 262-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||