[1] YANG Z B,LIU A J,YANG R Y,et al. Interface microstructure and formation mechanism of diamond abrasive laser brazed with Ni-Cr solder[J]. Rare Metal Materials and Engineering,2016,45(5):1952-1956. [2] SUNG C M. Brazed diamond grid:A revolutionary design for diamond saws[J]. Diamond and Related Materials,1999,8(8-9):1540-1543. [3] MA B J,YU Q X. Performance of brazed diamond wheels fabricated in hydrogen/methane plasmas or a vacuum[J]. The International Journal of Advanced Manufacturing Technology,2012,63(5-8):555-560. [4] ROMMEL D,SCHERM F,KUTTNER C,et al. Laser cladding of diamond tools:Interfacial reactions of diamond and molten metal[J]. Surface and Coatings Technology,2016,291:62-69. [5] MUKHOPADHYAY P,SIMHAN D R,GHOSH A. Challenges in brazing large synthetic diamond grit by Ni-based filler alloy[J]. Journal of Materials Processing Technology,2017,250:390-400. [6] KONSTANTY J. Powder metallurgy diamond tools-A review of manufacturing routes[J]. Materials Science Forum,2007,534-536:1121-1124. [7] ZHANG L. Filler metals,brazing processing and reliability for diamond tools brazing:A review[J]. Journal of Manufacturing Processes,2021,66:651-668. [8] 李文霞,张子煜. 钎焊金刚石工具的发展现状及改进研究[J]. 热加工工艺,2021,50(17):12-17. LI Wenxia,ZHANG Ziyu. Development status and improvement research of brazed diamond tools[J]. Hot Working Technology,2021,50(17):12-17. [9] 周玉梅,吕智,章兼植,等. 钎焊技术在金刚石工具中的应用[J]. 工具技术,2004,38(3):9-12. ZHOU Yumei,LÜ Zhi,ZHANG Jianzhi,et al. Application of brazing technology in diamond tool engineering[J]. Tool Engineering,2004,38(3):9-12. [10] DING W F,XU J H,CHEN Z Z,et al. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels[J]. Chinese Journal of Aeronautics,2010,23(4):501-510. [11] MA W,XIAO H Z,WANG S Y. Interface characteristics and mechanical properties of vacuum-brazed diamond with Ni-Cr+W composite filler alloy[J]. Vacuum,2022,198:110897. [12] 龙伟民,郝庆乐,傅玉灿,等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报,2020,34(23):23138-23144. LONG Weimin,HAO Qingle,FU Yucan,et al. Research progress of filler metals for brazing diamond tools[J]. Materials Reports,2020,34(23):23138-23144. [13] 杨骄,龙伟民,鲍丽,等. 铜基钎料的研究进展及应用[J]. 电焊机,2022,52(4):21-28. YANG Jiao,LONG Weimin,BAO Li,et al. Research progress and application of copper based brazing filler metal[J]. Electric Welding Machine,2022,52(4):21-28. [14] DUAN D Z,HAN F,DING J J,et al. Microstructure and performance of brazed diamonds with multilayer graphene-modified Cu-Sn-Ti solder alloys[J]. Ceramics International,2021,47(16):22854-22863. [15] DUAN D Z,LI C S,SUN L,et al. Microstructure and performance of brazed diamonds with Ni-Cr+multilayer graphene composite alloy[J]. Journal of Alloys and Compounds,2020,816:152630. [16] 蒋志鹏,孟普,王家锐. Ni-Cr合金对钎焊金刚石颗粒形貌与力学性能的影响[J]. 热加工工艺,2017,46(9):221-227. JIANG Zhipeng,MENG Pu,WANG Jiarui. Influence of Ni-Cr alloy on morphology and mechanical properties of brazed diamond grits[J]. Hot Working Technology,2017,46(9):221-227. [17] MERCAN S. Investigating the effect of brazing parameters on joint quality in DIN 2391 steel material and natural stone cutting core sockets joined by using induction brazing method[J]. Journal of Manufacturing Processes,2018,35:79-87. [18] MUKHOPADHYAH P,GHOSH A. On bond wear,grit-alloy interfacial chemistry and joint strength of synthetic diamond brazed with Ni-Cr-B-Si-Fe and Ti activated Ag-Cu filler alloys[J]. International Journal of Refractory Metals and Hard Materials,2018,72:236-243. [19] 卢金斌,徐九华,徐鸿钧,等. Ni-Cr合金真空钎焊金刚石界面微结构分析[J]. 机械科学与技术,2004,23(7):833-836. LU Jinbin,XU Jiuhua,XU Hongjun,et al. On the microstructure of the interface between Ni-Cr filler and diamond[J]. Mechanical Science and Technology for Aerospace Engineering,2004,23(7):833-836. [20] XIAO H Z,WANG S Y,XIAO B. Microstructural characteristics and mechanical properties of diamond grinding wheel brazed with modified Ni-Cr-W alloy using continuous tunnel furnace[J]. Ceramics International,2022,48(7):9258-9268. [21] XU Q,ZHANG J,MAO C,et al. Cu-induced enhancement of interfacial bonding for brazed diamond grits with Ni-Cr filler alloys[J]. International Journal of Refractory Metals and Hard Materials,2022,106:105874. [22] ZHANG J,LI X,XU Q,et al. Effects of Ce and La elements on interfacial bonding,thermal damage and mechanical performance of brazed diamonds with Ni-Cr filler alloy[J]. International Journal of Refractory Metals and Hard Materials,2021,98:105571. [23] DUAN D Z,LI C S,DIANG J J. Microstructure and performance of brazed diamond segments with Ni-Cr-x(CuCe) composite alloys[J]. Ceramics International,2020,46(9):13180-13188. [24] DUAN D Z,SUN L,LIN Q J. Effect of Cu-Ce alloy addition on the microstructure and mechanical performance of brazed diamonds with Ni-Cr alloy[J]. International Journal of Refractory Metals & Hard Materials,2019,80:253-258. [25] ZHAO J,GUO M,HU S P. Brazing of large synthetic diamond grits using graphene nanoplatelets reinforced Ni-Cr composite fillers[J]. Diamond & Related Materials,2020,109:108004. [26] 毛雅梅,黑鸿君,高洁,等. 钎焊金刚石研究进展及其工具的应用[J]. 机械工程学报,2022,58(4):80-93. MAO Yamei,HEI Hongjun,GAO Jie,et al. Research progress of brazing diamond and application of tools[J]. Journal of Mechanical Engineering,2022,58(4):80-93. [27] 王光祖,崔仲鸣,冯常财. 钎料合金对钎焊金刚石界面性能的影响[J]. 超硬材料工程,2021,33(1):7-11. WANG Guangzu,CUI Zhongming,FENG Changcai. The effect of brazing alloy on interfacial properties of brazed diamond[J]. Superhard Material Engineering,2021,33(1):7-11. [28] PFROMMER B G,COTE M,LOUIE S G,et al. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics,1997,131(1):233-240. [29] MERRILL M D. First principles of instruction[J]. Educational Technology Research and Development,2002,50(3):43-59. [30] ZHANG J,XU Q,HU Y L,et al. Interfacial bonding mechanism and adhesive transfer of brazed diamond with Ni-based filler alloy:first-principles and experimental perspective[J]. Carbon,2019,153:104-115. [31] XIE Y P,ZHAO S J. First principles study of Al and Ni segregation to the α-Fe/Cu (100) coherent interface and their effects on the interfacial cohesion[J]. Computational Materials Science,2012,63:329-335. [32] HUANG H,Zhang C,Liu J,et al. First-principles study on the structural stability and segregation behavior of γ-Fe/Cr2N interface with alloying additives M (M=Mn,V,Ti,Mo,and Ni)[J]. Metals,2016,6(7):156. [33] MA L,LU Y,LI S Y,et al. First-principles investigation of Sn9Zn(0001)/α-Al2O3(0001) interfacial adhesion[J]. Applied Surface Science,2018,435:863-869. [34] SONG X,HAN Y,WANG X,et al. First-principles study of adhesion strength and stability of the TiB2/TiC interface in composite materials[J]. Ceramics International,2018,44(2):1756-1763. [35] ZHANG X Z,XU P H,ZHANG M F,et al. Improving the wettability of Ag/ZrB2 system by Ti,Zr and Hf addition:an insight from first-principle calculations[J]. Applied Surface Science,2020,517:146201. [36] JIN H X,ZHANG J X,ZHANG Y J,et al. First-principles investigations of effects of solute elements on stability and electronic structure of laves phase/matrix interface in Ni-based super alloys[J]. Journal of Physics and Chemistry of Solids,2020,136:109166. [37] WANG H Y,ZHANG S,LI D J,et al. The simulation of adhesion,stability,electronic structure of W/ZrB2 interface using first-principles[J]. Surface and Coatings Technology,2013,228(Suppl.1):S583-S587. [38] INZOLI F,DELLASEGA D,RUSSO V,et al. Nanocrystalline diamond produced by direct current micro-plasma:Investigation of growth dynamics[J]. Diamond & Related Materials,2017,74:212-221. [39] PENG Y B,KONG Y,ZHANG W,et al. Effect of diffusion barrier and interfacial strengthening on the interface behavior between high entropy alloy and diamond[J]. Journal of Alloys and Compounds,2021,852:157023. |