机械工程学报 ›› 2023, Vol. 59 ›› Issue (23): 229-264.doi: 10.3901/JME.2023.23.229
陈磊, 刘阳钦, 唐川, 蒋翼隆, 石鹏飞, 钱林茂
收稿日期:
2023-10-16
修回日期:
2023-11-28
出版日期:
2023-12-05
发布日期:
2024-02-20
通讯作者:
钱林茂(通信作者),男,1971年出生,博士,长江学者特聘教授,博士研究生导师。主要研究方向为纳米摩擦学、超精密表面制造。E-mail:linmao@swjtu.edu.cn
作者简介:
陈磊,男,1985年出生,博士,教授,博士研究生导师。主要研究方向为面向IC制造的超精密表面清洗、超精密表面加工机理。
基金资助:
CHEN Lei, LIU Yangqin, TANG Chuan, JIANG Yilong, SHI Pengfei, QIAN Linmao
Received:
2023-10-16
Revised:
2023-11-28
Online:
2023-12-05
Published:
2024-02-20
摘要: 随着超大规模集成电路、微机电系统、精密光学等高新技术领域对超高精度表面和结构需求的不断增加,超精密加工正成为各国争夺的科技“制高点”。超精密加工的本质是通过微观材料的可控添加、迁移或去除实现超高精度表面或结构加工。将重点综述单点金刚石切削、扫描探针加工、化学机械抛光和超精密磨削等几种以接触模式实现微观材料去除的超精密加工技术的研究进展,并系统总结了加工参数、加工工具、加工环境和加工对象本身物化特性对微观去除的影响机制,以及不同机制主导下的材料微观去除模型及适用范围。最后,总结了未来超精密加工技术发展至原子尺度实现材料可控去除将面临的挑战。
中图分类号:
陈磊, 刘阳钦, 唐川, 蒋翼隆, 石鹏飞, 钱林茂. 面向超精密加工的微观材料去除机理研究进展[J]. 机械工程学报, 2023, 59(23): 229-264.
CHEN Lei, LIU Yangqin, TANG Chuan, JIANG Yilong, SHI Pengfei, QIAN Linmao. Research Advance on Material Removal at Microscale towards Ultra-precision Manufacturing[J]. Journal of Mechanical Engineering, 2023, 59(23): 229-264.
[1] SHACHAM-DIAMAND Y,OSAKA T,DATTA M,et al. Advanced nanoscale ULSI interconnects: Fundamentals and applications[M]. New York:Springer,2009. [2] IWAI H. Impact of micro-/nano-electronics,miniaturization limit,and technology development for the next 10 years and after[J]. ECS Transactions,2021,102(4):81. [3] MADOU M. Fundamentals of microfabrication:The science of miniaturization[M]. Balkema:CRC Press,2002. [4] DIMOV S,BROUSSEAU E,MINEV R,et al. Micro-and nano-manufacturing:Challenges and opportunities[J]. Proc Inst Mech Eng,Part C J Mech Eng Sci,2012,226(1):3-15. [5] 刘元希. 世界上最早的工具制造者[J]. 世界科学,2004,(12):21. LIU Yuanxi. The earliest tool maker in the world[J]. World Science,2004,(12):21-21. [6] HENSHILWOOD C,D'ERRICO F,MAREAN C,et al. An early bone tool industry from the Middle Stone Age at Blombos Cave,South Africa:Implications for the origins of modern human behaviour,symbolism and language[J]. J Hum Evol,2001,41(6):631-678. [7] RAICU L,MARIN D. Design aspects in machine tools evolution[C]//Journal of Proceedings of The International Conference on Manufacturing Systems. 2008,3:59-64. [8] BALASSA B,NOLAND M. Japan in the world economy[M]. Washington:Peterson Institute,1988. [9] BINNIG G,QUATE C F,GERBER C. Atomic force microscope[J]. Phys Rev Lett,1986,56(9):930-933. [10] BHUSHAN B,ISRAELACHVILI J,LANDMAN U. Nanotribology:Friction,wear and lubrication at the atomic scale[J]. Nature,1995,374(6523):607-616. [11] JACOBS T,CARPICK R. Nanoscale wear as a stress-assisted chemical reaction[J]. Nat Nanotechnol,2013,8(2):108-112. [12] CHEN Lei,WEN Jialin,ZHANG Peng,et al. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions[J]. Nat Commun,2018,9:1542. [13] HE Yang,SHE Dingshun,LIU Zhenyu,et al. Atomistic observation on diffusion-mediated friction between single-asperity contacts[J]. Nat Mater,2022,21:173-180. [14] BRINKSMEIER E,PREUSS W. Micro-machining[J]. Philos Trans Royal Soc A:Math Phys Eng Sci,2012,370(1973):3973-3992. [15] GAO Jian,LUO Xichun,FANG Fengzhou,et al. Fundamentals of atomic and close-to-atomic scale manufacturing:a review[J]. Int J Extreme Manuf,2021,4(1):012001. [16] 黄德超,黄德欢. 单原子操纵及原子尺度器件加工的最新进展[J]. 物理学进展,1995,15(4):406-414. HUANG Dechao,HUANG Dehuan. New approach of single atom manipulation and atomic-scale device fabrication[J]. Progress in Physics,1995,(04):406-414. [17] 房丰洲. 原子及近原子尺度制造——制造技术发展趋势[J]. 中国机械工程,2020,31(9):1009-1021. FANG Fengzhou. On atomic and close-to-atomic scale manufacturing-Development trend of manufacturing technology[J]. China Mechanical Engineering,2020,31(9):1009-1021. [18] PENG Yunfeng,SHEN Bingyi,WANG Zhenzhong,et al. Review on polishing technology of small-scale aspheric optics[J]. Int J Adv Manuf Tech,2021,115(4):965-987. [19] GUO Xiaoguang,HUANG Junxin,YUAN Song,et al. Study using ReaxFF-MD on the CMP process of fused glass in pure H2O/aqueous H2O2[J]. Appl Surf Sci,2021,556:149756. [20] HAN Junhong,CHEN Yanbing,WANG Jianpeng,et al. A review of molecular dynamics simulation in studying surface generation mechanism in ultra-precision cutting[J]. Int J Adv Manuf Tech,2022,122(3-4):1195-1231. [21] GUO Xiaoguang,HUANG Junxin,YUAN Song,et al. Effect of surface hydroxylation on ultra-precision machining of quartz glass[J]. Appl Surf Sci,2020,501:144170. [22] LI H,FANG X,ZHU Z,et al. The approach of nanoscale vision-based measurement via diamond-machined surface topography[J]. Measurement,2023,214:112814. [23] KAWASATO T,TAKAMARU H,HAMAZONO K,et al. Slurry conditions for reaction-induced slurry-assisted grinding of optical glass lens[J]. Int J Autom Technol,2023,17(1):40-46. [24] WANG Xiaoduo,YU Haibo,LI Peiwen,et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing:A review[J]. Opt Laser Technol,2021,135:106687. [25] TAN N,ZHANG Xingquan,NEO D,et al. A review of recent advances in fabrication of optical Fresnel lenses[J]. J Manuf Process,2021,71:113-133. [26] ABOU-EL-HOSSEIN K. Quality of silicon convex lenses fabricated by ultra-high precision diamond machining[J]. South African J Ind Eng,2013,24(1):91-97. [27] ZHONG Zhaowei. Surface finish of precision machined advanced materials[J]. J Mater Process Technol,2002,122(2-3):173-178. [28] NING Peixing,ZHAO Ji,JI Shijun,et al. Ultra-precision machining of a large amplitude umbrella surface based on slow tool servo[J]. Int J Precis Eng Manuf,2020,21:1999-2010. [29] PICARD Y,ADAMS D,VASILE M,et al. Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components[J]. Precis Eng,2003,27(1):59-69. [30] LI Duo,QIAO Zheng,WALTON K,et al. Theoretical and experimental investigation of surface topography generation in slow tool servo ultra-precision machining of freeform surfaces[J]. Materials,2018,11(12):2566. [31] MISHRA V,SHARMA R,KHATRI N,et al. Processing of polycarbonate by ultra-precision machining for optical applications[J]. Mater Today Proc,2018,5(11):25130-25138. [32] ZHANG S,TO S,ZHANG G. Diamond tool wear in ultra-precision machining[J]. Int J Adv Manuf Tech,2017,88:613-641. [33] GUO Xiaoguang,LI Qiang,LIU Tao,et al. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front Mech Eng,2017,12:89-98. [34] NI Chenbing,ZHU Lida,ZHENG Zhongpeng,et al. Effect of material anisotropy on ultra-precision machining of Ti-6Al-4V alloy fabricated by selective laser melting[J]. J Alloys Compd,2020,848:156457. [35] WU Lei,LENG Jiewu,JU Bingfeng. Digital twins-based smart design and control of ultra-precision machining:A review[J]. Symmetry,2021,13(9):1717. [36] SANG D,WANG Huide,QIU Meng,et al. Two dimensional β-InSe with layer-dependent properties:Band alignment,work function and optical properties[J]. Nanomaterials,2019,9(1):82. [37] FANG Fengzhou,LAI Min,WANG Jinshi,et al. Nanometric cutting:Mechanisms,practices and future perspectives[J]. Int J Mach Tools Manuf,2022,178:103905. [38] 赵香港,郝秀清,岳彩旭,等. 黑色金属的金刚石刀具加工技术研究进展[J]. 中国表面工程,2022,35(1):34-52. ZHAO Xianggang,HAO Xiuqing,YUE Caixu,et al. Research progress of diamond tool machining technology for ferrous metals[J]. China Surface Engineering,2022,35(1):34-52. [39] LIU Yangqin,LIU Lin,SHI Pengfei,et al. Improved wear resistance of CBN tool enabled by hBN as a water-based lubricant additive through suppressing tribochemical reactions[J]. Ceram Int,2023,49(11):17953-17960. [40] ZHAO Liang,ZHANG Junjie,ZHANG Jianguo,et al. Numerical simulation of materials-oriented ultra-precision diamond cutting:review and outlook[J]. Int J Extreme Manuf,2023,5:022001. [41] PU Rong,YU Zhongguang,HAO Xiuqing,et al. Effect of Si content on microstructure,mechanical properties,and cutting performance of TiSiN/AlTiN dual-layer coating[J]. J Manuf Process,2023,88:134-144. [42] FANG Fengzhou,CHEN Y,ZHANG X,et al. Nanometric cutting of single crystal silicon surfaces modified by ion implantation[J]. CIRP Ann,2011,60(1):527-530. [43] LUCCA D,KLOPFSTEIN M,RIEMER O. Ultra- precision machining:Cutting with diamond tools[J]. J Manuf Sci Eng,2020,142(11):110817. [44] ZHANG Xinquan,DENG Hui,LIU Kui. Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools[J]. CIRP Ann,2019,68(1):69-72. [45] SHAHINIAN H,DI K,NAVARE J,et al. Ultraprecision laser-assisted diamond machining of single crystal Ge[J]. Precis Eng,2020,65:149-155. [46] WANG Jinshi,ZHANG Xiaodong,FANG Fengzhou,et al. Diamond cutting of micro-structure array on brittle material assisted by multi-ion implantation[J]. Int J Mach Tools Manuf,2019,137:58-66. [47] THORNTON A,WILKS J. Clean surface reactions between diamond and steel[J]. Nature,1978,274(5673):792-793. [48] THORNTON A,WILKS J. Tool wear and solid state reactions during machining[J]. Wear,1979,53(1):165-187. [49] THORNTON A,WILKS J. The wear of diamond tools turning mild steel[J]. Wear,1980,65(1):67-74. [50] 周明,邹莱. 金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验[J]. 光学精密工程,2013,21(7):1786-1794. ZHOU Ming,ZOU Lai. Tool wear mechanism of diamond cutting of ferrous metals in frictional wear experiments[J]. Optics and Precision Engineering,2013,21(7):1786-1794. [51] EVANS C,BRYAN J. Cryogenic diamond turning of stainless steel[J]. CIRP Ann,1991,40(1):571-575. [52] 李占杰,宫虎,靳刚,等. 碳钢材料超精密切削的最新研究进展[J]. 工具技术,2018,52(7):10-16. LI Zhanjie,GONG Hu,JIN Gang,et al. Latest research progress of ultra-precision cutting carbon steel[J]. Tool Engineering,2018,52(07):10-16. [53] SHAMOTO E,MORIWAKI T. Study on elliptical vibration cutting[J]. CIRP Ann,1994,43(1):35-38. [54] KLOCKE F,KRIEG T. Coated tools for metal cutting–features and applications[J]. CIRP Ann,1999,48(2):515-525. [55] CHEONG W,ZHANG L. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation[J]. Nanotechnology,2000,11(3):173. [56] GASSILLOUD R,BALLIF C,GASSER P,et al. Deformation mechanisms of silicon during nanoscratching[J]. Phys Status Solidi A,2005,202(15):2858-2869. [57] STEMPFLÉ P,DOMATTI A,DANG H,et al. Mechanical and chemical wear components in environmental multi-asperity nanotribology[J]. Tribol Int,2015,82:358-374. [58] STEMPFLÉ P,TAKADOUM J. Multi-asperity nanotribological behavior of single-crystal silicon:Crystallography-induced anisotropy in friction and wear[J]. Tribol Int,2012,48:35-43. [59] JASINEVICIUS R,DUDUCH J,PIZANI P. Evidence of crystallographic orientation dependence upon cyclic microindentation-induced recrystallization within amorphous surface layer[J]. Mater Lett,2013,94:201-205. [60] WU Hao,MELKOTE S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon:Role of phase transformation and slip[J]. Mater Sci Eng A,2012,549:200-205. [61] CHAUDHARI A,SOH Z,WANG Hao,et al. Rehbinder effect in ultraprecision machining of ductile materials[J]. Int J Mach Tools Manuf,2018,133:47-60. [62] YIN Jingfei,BAI Qian,ZHANG Bi. Methods for detection of subsurface damage:A review[J]. Chin J Mech Eng,2018,31:41. [63] PATTEN J,GAO Wei,YASUTO K. Ductile regime nanomachining of single-crystal silicon carbide[J]. J Manuf Sci Eng,2005,127(3):522-532. [64] ZHANG Jianguo,ZHANG Junjie,LIU Changlin,et al. Machinability of single crystal calcium fluoride by applying elliptical vibration diamond cutting[J]. Precis Eng,2020,66:306-314. [65] KOMIYA R,KIMURA T,NOMURA T,et al. Ultraprecision cutting of single-crystal calcium fluoride for fabricating micro flow cells[J]. J Adv Mech Des Syst Manuf,2018,12(1):JAMDSM0021. [66] AI Jun,DU Qifeng,QIN Zhongli,et al. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights[J]. Opt Express,2018,26(16):20965-20974. [67] BAI Jinxuan,XU Zhiwei,QIAN Linmao. Precision-improving manufacturing produces ordered ultra-fine grained surface layer of tungsten heavy alloy through ultrasonic elliptical vibration cutting[J]. Mater Des,2022,220:110859. [68] ZHANG Guoqing,HAN Junhong,CHEN Yanbing,et al. Generation mechanism and dual-dynamics simulation of surface patterns in single-point diamond turning of single-crystal copper[J]. J Manuf Process,2022,75:1023-1038. [69] KALKAN I,VARDAR O,HIZLI I ,et al. Correlation between melt quality and machinability of Al9Si3Cu HPDC alloy[C]//Shape Casting:7th International Symposium Celebrating Prof John Campbell's 80th Birthday. Springer,2019:343-352. [70] GOEL S,LUO Xichun,AGRAWAL A,et al. Diamond machining of silicon:A review of advances in molecular dynamics simulation[J]. Int J Mach Tools Manuf,2015,88:131-164. [71] ABDULKADIR L,ABOU-EL-HOSSEIN K,JUMARE A,et al. Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining[J]. Int J Adv Manuf Tech,2018,98:317-371. [72] FANG Fengzhou,WU H,LIU Y. Modelling and experimental investigation on nanometric cutting of monocrystalline silicon[J]. Int J Mach Tools Manuf,2005,45(15):1681-1686. [73] GOEL S,KOVALCHENKO A,STUKOWSKI A,et al. Influence of microstructure on the cutting behaviour of silicon[J]. Acta Mater,2016,105:464-478. [74] LAI M,ZHANG X,FANG Fengzhou. Study on critical rake angle in nanometric cutting[J]. Appl Phys A,2012,108:809-818. [75] LIU Changlin,ZHANG Jianguo,ZHANG Junjie,et al. Numerical investigation on material removal mechanism in elliptical vibration cutting of single-crystal silicon[J]. Mater Sci Semicond Proc,2021,134:106019. [76] BINNIG G,ROHRER H. The scanning tunneling microscope[J]. Sci Am,1985,253(2):50-58. [77] GARCIA R,KNOLL A W,RIEDO E. Advanced scanning probe lithography[J]. Nat Nanotechnol,2014,9(8):577-587. [78] SALAITA K,WANG Yuhuang,MIRKIN C. Applications of dip-pen nanolithography[J]. Nat Nanotechnol,2007,2(3):145-155. [79] DAGATA J. Device fabrication by scanned probe oxidation[J]. Science,1995,270(5242):1625-1625. [80] CHOU S,KRAUSS P,RENSTROM P. Imprint lithography with 25-nanometer resolution[J]. Science,1996,272(5258):85-87. [81] WAGNER C,HARNED N. Lithography gets extreme[J]. Nat Photonics,2010,4(1):24-26. [82] BERSON J,BURSHTAIN D,ZEIRA A,et al. Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography[J]. Nat Mater,2015,14(6):613-621. [83] CHEN Hao,BHUIYA A,DING Qing,et al. Towards do-it-yourself planar optical components using plasmon-assisted etching[J]. Nat Commun,2016,7(1):10468. [84] GEORGE S,LEE Y. Prospects for thermal atomic layer etching using sequential,self-limiting fluorination and ligand-exchange reactions[J]. ACS Nano,2016,10(5):4889-4894. [85] ITO T,OKAZAKI S. Pushing the limits of lithography[J]. Nature,2000,406(6799):1027-1031. [86] CHOU S,KEIMEL C,GU Jian. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature,2002,417(6891):835-837. [87] GUO Jian,GAO Jian,XIAO Chen,et al. Mechanochemical reactions of GaN-Al2O3 interface at the nanoasperity contact:roles of crystallographic polarity and ambient humidity[J]. Friction,2022,10(7):1005-1018. [88] CHEN Lei,HU Luocheng,XIAO Chen,et al. Effect of crystallographic orientation on mechanical removal of CaF2[J]. Wear,2017,376:409-416. [89] SONG Chenfei,LI Xiaoying,YU Bingjun,et al. Friction-induced nanofabrication method to produce protrusive nanostructures on quartz[J]. Nanoscale Res Lett,2011,6:310. [90] WU Lei,CUI Licong,GUO Jian,et al. Rapid and flexible construction of inverted silicon architectures with nanogaps as high-performance SERS substrates[J]. Appl Surf Sci,2022,594:153429. [91] WANG Hongbo,DENG Changbang,XIAO Chen,et al. Fast and maskless nanofabrication for high-quality nanochannels[J]. Sensors and Actuators B:Chemical,2019,288:383-391. [92] WU Lei,SHANG Kedong,CHEN Tingting,et al. Template-free lithography for cross-scale channels towards enhancing nanofluidic devices[J]. Sensors and Actuators B:Chemical,2022,372:132642. [93] GAO Jian,CHEN Peng,WU Lei,et al. A review on fabrication of blazed gratings[J]. J Phys D:Appl Phys,2021,54(31):313001. [94] YAN Yongda,CUI Xing,GENG Yanquan,et al. Effect of scratching trajectory and feeding direction on formation of ripple structure on polycarbonate sheet using AFM tip-based nanomachining process[J]. Micro Nano Lett,2017,12(12):1011-1015. [95] WANG Jiqiang,YAN Yongda,GENG Yanquan,et al. Fabrication of polydimethylsiloxane nanofluidic chips under AFM tip-based nanomilling process[J]. Nanoscale Res Lett,2019,14:136. [96] YAN Yongda,CHANG Shunyu,WANG Tong,et al. Scratch on polymer materials using AFM tip-based approach:A review[J]. Polymers,2019,11(10):1590. [97] WANG Jiqiang,YAN Yongda,CHANG Shunyu,et al. Study of the formation mechanism of bundle structures using AFM tip-based nanoscratching approach[J]. Tribol Int,2020,142:106000. [98] LI Jianfeng,YI Shuang,WANG Kaiqiang,et al. Alkene-catalyzed rapid layer-by-layer thinning of black phosphorus for precise nanomanufacturing[J]. ACS Nano,2022,16(8):13111-13122. [99] SHI Bin,GAN Xuehui,LANG Haojie,et al. Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding[J]. Nanoscale,2021,13(40):16860-16871. [100] WEI Zhongqing,WANG Debin,KIM S,et al. Nanoscale tunable reduction of graphene oxide for graphene electronics[J]. Science,2010,328(5984):1373-1376. [101] TEMIRYAZEV A. Pulse force nanolithography on hard surfaces using atomic force microscopy with a sharp single-crystal diamond tip[J]. Diam Relat Mater,2014,48:60-64. [102] KIM U,MORITA N,LEE D,et al. The possibility of multi-layer nanofabrication via atomic force microscope- based pulse electrochemical nanopatterning[J]. Nanotechnology,2017,28(19):195302. [103] SHINATO K,HUANG Feifei,JIN Ying. Principle and application of atomic force microscopy (AFM) for nanoscale investigation of metal corrosion[J]. Corros Rev,2020,38(5):423-432. [104] EIGLER D,SCHWEIZER E. Positioning single atoms with a scanning tunnelling microscope[J]. Nature,1990,344:524-526. [105] TAPASZTÓ L,DOBRIK G,LAMBIN P,et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography[J]. Nat Nanotechnol,2008,3(7):397-401. [106] MAGDA G,JIN Xiaozhan,HAGYMÁSI I,et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons[J]. Nature,2014,514(7524):608-611. [107] BONORA A. Flex-mount polishing of silicon wafers[J]. Solid State Technol,1978,20(10):55-62. [108] FAN Wei. Advanced modeling of planarization processes for integrated circuit fabrication[D]. Massachusetts Institute of Technology,2012. [109] STEIGERWALD J. Chemical mechanical polish:The enabling technology[C]//2008 IEEE International Electron Devices Meeting. IEEE,2008:1-4. [110] ZHAO Gaoyang,WEI Zhen,WANG Weilei,et al. Review on modeling and application of chemical mechanical polishing[J]. Nanotechnol Rev,2020,9(1):182-189. [111] ZHAO Dewen,LU Xincun. Chemical mechanical polishing:Theory and experiment[J]. Friction,2013,1:306-326. [112] ZHANG Zhenyu,CUI Junfeng,ZHANG Jiabo,et al. Environment friendly chemical mechanical polishing of copper[J]. Appl Surf Sci,2019,467:5-11. [113] ZHANG Zhenyu,LIAO Longxing,WANG Xinze,et al. Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy[J]. Appl Surf Sci,2020,506:144670. [114] LIAO Longxing,ZHANG Zhenyu,MENG Fanning,et al. A novel slurry for chemical mechanical polishing of single crystal diamond[J]. Appl Surf Sci,2021,564:150431. [115] LI Jing,LIU Yuhong,LU Xinchun,et al. Material removal mechanism of copper CMP from a chemical–mechanical synergy perspective[J]. Tribol Lett,2013,49:11-19. [116] YAO Caihong,NIU Xinhuan,WANG Chenwei,et al. Study on the weakly alkaline slurry of copper chemical mechanical planarization for GLSI[J]. ECS J Solid State Sci Technol,2017,6(8):P499-P506. [117] ZHOU Jiakai,WANG Jianchao,NIU Xinhuan,et al. Chemical interactions and mechanisms of different pH regulators on copper and cobalt removal rate of copper film CMP for GLSI[J]. ECS J Solid State Sci Technol,2019,8(2):P99-P105. [118] DU Tianbao,VIJAYAKUMAR A,DESAI V. Effect of hydrogen peroxide on oxidation of copper in CMP slurries containing glycine and Cu ions[J]. Electrochim Acta,2004,49(25):4505-4512. [119] JANG S,JEONG H,YUH M,et al. Effect of glycine on copper CMP[J]. Int J Precis Eng Manuf Green Technol,2016,3:155-159. [120] WEN Jialin,MA Tianbao,ZHANG Weiwei,et al. Atomistic insights into Cu chemical mechanical polishing mechanism in aqueous hydrogen peroxide and glycine:ReaxFF reactive molecular dynamics simulations[J]. J Phys Chem C,2019,123(43):26467-26474. [121] GUO Xiaoguang,YUAN Song,GOU Yongjun,et al. Study on chemical effects of H2O2 and glycine in the copper CMP process using ReaxFF MD[J]. Appl Surf Sci,2020,508:145262. [122] DENG Haiwen,TAN Baimei,GAO Baohong,et al. A novel cleaner for colloidal silica abrasive removal in post-Cu CMP cleaning[J]. J Semicond,2015,36(10):106002. [123] QU Lijing,GAO Baohong,WANG Xuanshi,et al. Effect of intermolecular interaction of compound surfactant on particle removal in post-Cu CMP cleaning[J]. ECS J Solid State Sci Technol,2021,10(6):064007. [124] LUO Chong,XU Yi,ZENG Nengyuan,et al. Synergy between dodecylbenzenesulfonic acid and isomeric alcohol polyoxyethylene ether for nano-scale scratch reduction in copper chemical mechanical polishing[J]. Tribol Int,2020,152:106576. [125] XU Qinzhi,CHEN Lan,YANG Fei,et al. Influence of slurry components on copper CMP performance in alkaline slurry[J]. Microelectron Eng,2017,183-184:1-11. [126] LI Jing,LU Xinchun,BO Zong. Inhibition mechanism of benzotriazole in copper chemical mechanical planarization[J]. Appl Mech Mater,2014,607:74-78. [127] WANG Yazhen,ZHANG Shihao,TAN Baimei,et al. Effect of corrosion inhibitor BTA on silica particles and their adsorption on copper surface in copper interconnection CMP[J]. ECS J Solid State Sci Technol,2022,11(4):044002. [128] XU Wenhu,MA Lian,CHEN Yan,et al. In situ study of mechanical-electrochemical interactions during cobalt ECMP[J]. J Electrochem Soc,2018,165(5):E184. [129] LIU Jinwei,JIANG Liang,WU Hanqiang,et al. 5-Methyl-1H-benzotriazole as an effective corrosion inhibitor for ultra-precision chemical mechanical polishing of bearing steel[J]. J Electrochem Soc,2020,167(13):131502. [130] LIU Jinwei,JIANG Liang,QIAN Linmao. Achievement of sub-nanometer surface roughness of bearing steel via chemical mechanical polishing with the synergistic effect of heterocyclic compounds containing N and S[J]. J Appl Electrochem,2022,52:357-373. [131] PENG Wumao,HUANG Chaopeng,ZHANG Shaohua,et al. Achieving a super-smooth surface of stainless bearing steel with chemical mechanical polishing via controlling corrosive wear of Fe and Cr[J]. J Solid State Electrochem,2023,27(2):467-477. [132] PENG Wumao,GAO Yang,JIANG Liang,et al. Attaining ultra-smooth 18CrNiMo7-6 case hardening steel surfaces with chemical mechanical polishing[J]. Lubricants,2022,10(9):199. [133] LEE H,KIM H,JEONG H. Approaches to sustainability in chemical mechanical polishing (CMP):A review[J]. Int J Precis Eng Manuf Green Technol,2022,9:349-367. [134] GUO Jie,GONG Jian,SHI Pengfei,et al. Study on the polishing mechanism of pH-dependent tribochemical removal in CMP of CaF2 crystal[J]. Tribol Int,2020,150:106370. [135] YU Jiaxin,KIM S,YU Bingjun,et al. Role of tribochemistry in nanowear of single-crystalline silicon[J]. ACS Appl Mater Interfaces,2012,4(3):1585-1593. [136] 袁巨龙,张飞虎,戴一帆,等. 超精密加工领域科学技术发展研究[J]. 机械工程学报,2010,46(15):161-177. YUAN Julong,ZHANG Feihu,DAI Yifan,et al. Development research of science and technologies in ultra-precision machining field[J]. Journal of Mechanical Engineering,2010,46(15):161-177. [137] BRINKSMEIER E,MUTLUGÜNES Y,KLOCKE F,et al. Ultra-precision grinding[J]. CIRP Ann,2010,59(2):652-671. [138] YUAN Julong,Lü Binghai,HANG Wei,et al. Review on the progress of ultra-precision machining technologies[J]. Front Mech Eng,2017,12:158-180. [139] 徐西鹏,黄辉,胡中伟,等. 磨粒工具的研究现状及发展趋势[J]. 机械工程学报,2022,58(15):2-20. XU Xipeng,HUANG Hui,HU Zhongwei,et al. Development of abrasive tools:State-of-the-art and prospectives[J]. Journal of Mechanical Engineering,2022,58(15):2-20. [140] MALKIN S,GUO C. Thermal analysis of grinding[J]. CIRP Ann,2007,56(2):760-782. [141] 滕燕,盖玉先,董申. 超精密磨削中的超硬砂轮修整技术[J]. 航空精密制造技术,2000,36(1):17-20. TENG Yan,GAI Yuxian,DONG Shen. Super-abrasive grinding wheel dressing for ultra-precision grinding[J]. Aviation Precision Manufacturing Technology,2000,36(1):17-20. [142] 袁巨龙,王志伟,文东辉,等. 超精密加工现状综述[J]. 机械工程学报,2007,43(1):35-48. YUAN Julong,WANG Zhiwei,WEN Donghui,et al. Review of the current situation of ultra-precision machining[J]. Journal of Mechanical Engineering,2007,43(1):35-48. [143] 陈根余,谢小柱,李力钧,等. 超硬磨料砂轮修整与激光修整新进展[J]. 金刚石与磨料磨具工程,2002,(2):8-12. CHEN Genyu,XIE Xiaozhu,LI Lijun,et al. New progress in superabrasive grinding wheel dressing and laser dressing[J]. Diamond & Abrasives Engineering,2002,(2):8-12. [144] OHMORI H,NAKAGAWA T. Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels[J]. CIRP Ann.,1995,44(1):287-290. [145] 刘世民,于栋利,田永君,等. 用SACP技术研究ELID磨削后的单晶硅片表面变质层[J]. 电子显微学报,1998,17(1):55-58. LIN Shimin,YU Dongli,TIAN Yongjun,et al. An investigation of the damaged layer on the silicon wafer surface by SACP technique[J]. Journal of Chinese Electron Microscopy Society,1998,17(1):55-58. [146] 任莹晖,周家恒,李伟,等. 化学机械磨削技术研究现状与展望[J]. 中国机械工程,2021,32(18):2143-2152. REN Yinghui,ZHOU Jiaheng,LI Wei,et al. Research status and prospect of CMG technology[J]. China Mechanical Engnieering,2021,32(18):2143-2152. [147] ZHOU L,KAWAI S,HONDA M,et al. Research on Chemo-Mechanical-Grinding (CMG) of Si wafer-1st Report:Development of CMG Wheel[J]. J Japan Soc Precis Eng,2002,68(12):1559-1563. [148] WU Ke,ZHOU Libo,SHIMIZU J,et al. Study on the potential of chemo-mechanical-grinding (CMG) process of sapphire wafer[J]. Int J Adv Manuf Tech,2017,91:1539-1546. [149] 仇中军,周立波,房丰洲,等. 石英玻璃的化学机械磨削加工[J]. 光学精密工程,2010,18(7):1554-1561. QIU Zhongjun,ZHOU Libo,FANG Fengzhou,et al. Chemical mechanical grinding for quartz glass[J]. Optics and Precision Engineering,2010,18(7):1554-1561. [150] HUANG H,WANG B,WANG Y,et al. Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding[J]. Mater Sci Eng A,2008,479(1-2):373-379. [151] 金钊,李锦胜,康仁科,等. 应用软磨料磨削的单晶硅超精密制造技术[J]. 光电工程,2011,38(12):75-80. JIN Zhao,LI Jinsheng,KANG Renke,et al. Ultra-precision manufacturing technology with soft abrasive grinding for silicon[J]. Opto-Electronic Engineering,2011,38(12):75-80. [152] BHUSHAN B,RUAN Juai. Atomic-scale friction measurements using friction force microscopy:part II—application to magnetic media[J]. J Tribol,1994,116(2):389-396. [153] BHUSHAN B,SUNDARARAJAN S. Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy[J]. Acta Mater,1998,46(11):3793-3804. [154] KANEKO R,MIYAMOTO T,ANDOH Y,et al. Microwear[J]. Thin Solid Films,1996,273(1-2):105-111. [155] YU Bingjun,DONG Hanshan,QIAN Linmao,et al. Friction-induced nanofabrication on monocrystalline silicon[J]. Nanotechnology,2009,20(46):465303. [156] YU Bingjun,QIAN Linmao,DONG Hanshan,et al. Friction-induced hillocks on monocrystalline silicon in atmosphere and in vacuum[J]. Wear,2010,268(9-10):1095-1102. [157] YU Bingjun,QIAN Linmao. Friction-induced nanofabrication:A review[J]. Chin. J. Mech. Eng.,2021,34:32. [158] HE Hongtu,KIM S,QIAN Linmao. Effects of contact pressure,counter-surface and humidity on wear of soda-lime-silica glass at nanoscale[J]. Tribol Int,2016,94:675-681. [159] FENG Chengqiang,ZHOU Huaicheng,CUI Licong,et al. Microwear mechanism of monocrystalline germanium[J]. Wear,2022,494:204270. [160] LIU Yangqin,WANG Yang,PENG Yongmin,et al. Stress-dependent nanowear of nickel-based single crystal superalloy:Transition from hillock to groove[J]. Tribol Int,2023,183:108395. [161] XIAO Chen,CHEN Cheng,GUO Jian,et al. Threshold contact pressure for the material removal on monocrystalline silicon by SiO2 microsphere[J]. Wear,2017,376:188-193. [162] SHEEHAN P. The wear kinetics of NaCl under dry nitrogen and at low humidities[J]. Chem Phys Lett,2005,410(1-3):151-155. [163] BOSCOBOINIK A,OLSON D,ADAMS H,et al. Measuring and modelling mechanochemical reaction kinetics[J]. Chem Commun,2020,56(56):7730-7733. [164] PARK N,KIM M,LANGFORD S,et al. Atomic layer wear of single-crystal calcite in aqueous solution using scanning force microscopy[J]. J Appl Phys,1996,80(5):2680-2686. [165] CHEN Lei,XIAO Chen,HE Xin,et al. Friction and tribochemical wear behaviors of native oxide layer on silicon at nanoscale[J]. Tribol Lett,2017,65(4):139. [166] DAI Ling,SORKIN V,ZHANG Yongwei. Effect of surface chemistry on the mechanisms and governing laws of friction and wear[J]. ACS Appl Mater Interfaces,2016,8(13):8765-8772. [167] YANG Yongjian,HUANG Liping,SHI Yunfeng. Adhesion suppresses atomic wear in single-asperity sliding[J]. Wear,2016,352:31-41. [168] YU Bingjun,LI Xiaoying,DONG Hanshan,et al. Towards a deeper understanding of the formation of friction-induced hillocks on monocrystalline silicon[J]. J Phys D:Appl Phys,2012,45(14):145301. [169] CHEN Lei,QI Yaqiong,YU Bingjun,et al. Sliding speed-dependent tribochemical wear of oxide-free silicon[J]. Nanoscale Res Lett,2017,12(1):404. [170] CHEN Lei,HE Xin,LIU Hongshen,et al. Water Adsorption on Hydrophilic and Hydrophobic Surfaces of Silicon[J]. J Phys Chem C,2018,122(21):11385-11391. [171] ASAY D,BARNETTE A,KIM S. Effects of surface chemistry on structure and thermodynamics of water layers at solid-vapor interfaces[J]. J Phys Chem C,2009,113(6):2128-2133. [172] SZOSZKIEWICZ R,RIEDO E. Nucleation time of nanoscale water bridges[J]. Phys Rev Lett,2005,95(13):135502. [173] CHEN Lei,HE Hongtu,WANG Xiaodong,et al. Tribology of Si/SiO2 in humid air:Transition from severe chemical wear to wearless behavior at nanoscale[J]. Langmuir,2015,31(1):149-156. [174] ZHANG Peng,HE Hongtu,CHEN Cheng,et al. Effect of abrasive particle size on tribochemical wear of monocrystalline silicon[J]. Tribol Int,2017,109:222-228. [175] HELT J,BATTEAS J. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements[J]. Langmuir,2006,22(14):6130-6141. [176] ZHANG Peng,CHEN Cheng,XIAO Chen,et al. Comparison of wear methods at nanoscale:Line scanning and area scanning[J]. Wear,2018,400-401:137-143. [177] BHUSHAN B,GOLDADE A. Measurements and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using Kelvin probe microscopy[J]. Appl Surf Sci,2000,157(4):373-381. [178] BHUSHAN B. Nano- to microscale wear and mechanical characterization using scanning probe microscopy[J]. Wear,2001,251(1-12):1105-1123. [179] WANG Xiaodong,SONG Chenfei,YU Bingjun,et al. Nanowear behaviour of monocrystalline silicon against SiO2 tip in water[J]. Wear,2013,298-299:80-86. [180] LIU Zhaohui,GONG Jian,XIAO Chen,et al. Temperature-dependent mechanochemical wear of silicon in water:The role of Si-OH surfacial groups[J]. Langmuir,2019,35(24):7735-7743. [181] XIAO Chen,CHEN Cheng,WANG Hongbo,et al. Effect of counter-surface chemistry on defect-free material removal of monocrystalline silicon[J]. Wear,2019,426:1233-1239. [182] 陈超. 基于扫描探针的石墨原子台阶摩擦化学磨损性能研究[D]. 成都:西南交通大学,2020. CHEN Chao. Study on tribochemical wear property of graphite atomic edge step based on scanning probe[D]. Chengdu:Southwest Jiaotong University,2020. [183] GOTSMANN B,LANTZ M. Atomistic wear in a single asperity sliding contact[J]. Phys Rev Lett,2008,101(12):125501. [184] GUO Jian,XIAO Chen,GAO Jian,et al. Interplay between counter-surface chemistry and mechanical activation in mechanochemical removal of N-faced GaN surface in humid ambient[J]. Tribol Int,2021,159:107004. [185] NOVOSELOV K,GEIM A,MOROZOV S,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. [186] XU Qiang,LI Xin,ZHANG Jie,et al. Suppressing nanoscale wear by graphene/graphene interfacial contact architecture:A molecular dynamics study[J]. ACS Appl Mater Interfaces,2017,9(46):40959-40968. [187] LIU Yanmin,SONG Aisheng,XU Zhi,et al. Interlayer friction and superlubricity in single-crystalline contact enabled by two-dimensional flake-wrapped atomic force microscope tips[J]. ACS Nano,2018,12(8):7638-7646. [188] LIU Yanmin,WANG Kang,XU Qiang,et al. Superlubricity between graphite layers in ultrahigh vacuum[J]. ACS Appl Mater Interfaces,2020,12(38):43167-43172. [189] LIU Shuwei,WANG Huaping,XU Qiang,et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere[J]. Nat Commun,2017,8:14029. [190] DALY M,CAO Changhong,SUN Hao,et al. Interfacial shear strength of multilayer graphene oxide films[J]. ACS Nano,2016,10(2):1939-1947. [191] LI Jianfeng,LI Jinjin,YI Suang,et al. Boundary slip of oil molecules at MoS2 homojunctions governing superlubricity[J]. ACS Appl Mater Interfaces,2022,14(6):8644-8653. [192] TIAN Jisen,YIN Xuan,LI Jinjin,et al. Tribo-induced interfacial material transfer of an atomic force microscopy probe assisting superlubricity in a WS2/graphene heterojunction[J]. ACS Appl Mater Interfaces,2020,12(3):4031-4040. [193] LI Yanxiao,HUANG Shuohan,WEI Congjie,et al. Friction between MXenes and other two-dimensional materials at the nanoscale[J]. Carbon,2022,196:774-782. [194] VASIĆ B,MATKOVIĆ A,RALEVIĆ U,et al. Nanoscale wear of graphene and wear protection by graphene[J]. Carbon,2017,120:137-144. [195] TRAN KHAC B,DELRIO F,CHUNG K. Interfacial strength and surface damage characteristics of atomically thin h-BN,MoS2,and graphene[J]. ACS Appl Mater Interfaces,2018,10(10):9164-9177. [196] KIM S,AHN H. Nanotribological properties and scratch resistance of MoS2 bilayer on a SiO2/Si substrate[J]. Friction,2023,11:154-164. [197] LIU Yanfei,YU Shengtao,SHI Qiuyu,et al. Multilayer coatings for tribology:A mini review[J]. Nanomaterials,2022,12(9):1388. [198] Dwivedi N,Ott A,Sasikumar K,et al. Graphene overcoats for ultra-high storage density magnetic media[J]. Nat Commun,2021,12:2854. [199] LIU Yangqin,JIANG Yilong,SUN Junhui,et al. Inverse relationship between thickness and wear of fluorinated graphene:“Thinner is better”[J]. Nano Lett,2022,22(14):6018-6025. [200] YU Tongtong,SHEN Ruilin,WU Zishuai,et al. Monolayer NbSe2 favors ultralow friction and super wear resistance[J]. Nano Lett,2023,23(5):1865-1871. [201] TANG Chuan,JIANG Yilong,CHEN Lei,et al. Layer-dependent nanowear of graphene oxide[J]. ACS Nano,2023,17(3):2497-2505. [202] WANG Xiaodong,YU Jiaxin,CHEN Lei,et al. Effects of water and oxygen on the tribochemical wear of monocrystalline Si (100) against SiO2 sphere by simulating the contact conditions in MEMS[J]. Wear,2011,271(9-10):1681-1688. [203] ŞIRIN Ş. Investigation of the performance of cermet tools in the turning of Haynes 25 superalloy under gaseous N2 and hybrid nanofluid cutting environments[J]. J Manuf Process,2022,76:428-443. [204] LUO Chunsheng,JIANG Yilong,LIU Yangqin,et al. Role of interfacial bonding in tribochemical wear[J]. Front Chem,2022,10:852371. [205] GONG Jian,XIAO Chen,YU Jiaxin,et al. Stress-enhanced dissolution and delamination wear of crystal CaF2 in water condition[J]. Wear,2019,418:86-93. [206] BARNETTE A,ASAY D,JANIK M,et al. Adsorption isotherm and orientation of alcohols on hydrophilic SiO2 under ambient conditions[J]. J Phys Chem C,2009,113(24):10632-10641. [207] BARNETTE A,ASAY D,KIM D,et al. Experimental and density functional theory study of the tribochemical wear behavior of SiO2 in humid and alcohol vapor environments[J]. Langmuir,2009,25(22):13052-13061. [208] ASAY D,DUGGER M,OHLHAUSEN J,et al. Macro-to nanoscale wear prevention via molecular adsorption[J]. Langmuir,2008,24(1):155-159. [209] CHEN Lei,YANG Y,HE Hongtu,et al. Effect of coadsorption of water and alcohol vapor on the nanowear of silicon[J]. Wear,2015,332:879-884. [210] CHEN Lei,QIAN Linmao. Role of interfacial water in adhesion,friction,and wear—A critical review[J]. Friction,2021,9(1):1-28. [211] XIAO Chen,SHI Pengfei,YAN Wenmeng,et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact[J]. Colloids and Interfaces,2019,3(3):55. [212] WANG Xiaodong,KIM S,CHEN Cheng,et al. Humidity dependence of tribochemical wear of monocrystalline silicon[J]. ACS Appl Mater Interfaces,2015,7(27):14785-14792. [213] OOTANI Y,XU J,HATANO T,et al. Contrasting roles of water at sliding interfaces between silicon-based materials:First-principles molecular dynamics sliding simulations[J]. J Phys Chem C,2018,122(19):10459-10467. [214] WANG Xiaodong,GUO Jian,CHEN Cheng,et al. A simple method to control nanotribology behaviors of monocrystalline silicon[J]. J Appl Phys,2016,119(4). [215] CHEN Cheng,XIAO Chen,WANG Xiaodong,et al. Role of water in the tribochemical removal of bare silicon[J]. Appl Surf Sci,2016,390:696-702. [216] HE Hong,HAHN S,YU Jiaxin,et al. Factors governing wear of soda lime silicate glass:Insights from comparison between nano-and macro-scale wear[J]. Tribol Int,2022,171:107566. [217] WANG Wen,DIETZEL D,SCHIRMEISEN A. Thermal activation of nanoscale wear[J]. Phys Rev Lett,2021,126(19):196101. [218] ZARUDI I,NGUYEN T,ZHANG L. Effect of temperature and stress on plastic deformation in monocrystalline silicon induced by scratching[J]. Appl Phys Lett,2005,86:011922. [219] MORAS G,KLEMENZ A,REICHENBACH T,et al. Shear melting of silicon and diamond and the disappearance of the polyamorphic transition under shear[J]. Phys Rev Mater,2018,2(8):083601. [220] REICHENBACH T,MORAS G,PASTEWKA L,et al. Solid-phase silicon homoepitaxy via shear-induced amorphization and recrystallization[J]. Phys Rev Lett,2021,127(12):126101. [221] ZHANG Xinquan,LIU K,KUMAR A,et al. A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel[J]. J Mater Process Technol,2014,214(2):496-506. [222] MORIWAKI T. Development of 2DOF ultrasonic vibration cutting device for ultraprecision elliptical vibration cutting[J]. Key Eng Mater,2010,447:164-168. [223] CASSTEVENS J. Diamond turning of steel in carbon-saturated atmospheres[J]. Precis Eng,1983,5(1):9-15. [224] ZHOU Menghua,WANG Jianpeng,ZHANG Guoqing. Influence of lubricant environment on machined surface quality in single-point diamond turning of ferrous metal[J]. Micromachines,2021,12(9):1110. [225] HATEFI S,ABOU-EL-HOSSEIN K. Experimental investigation on the effects of magnetic field assistance on the quality of surface finish for sustainable manufacturing of ultra-precision single-point diamond turning of titanium alloys[J]. Front Mech Eng,2022,8:1037372. [226] YIP W,TO S. Reduction of material swelling and recovery of titanium alloys in diamond cutting by magnetic field assistance[J]. J Alloys Compd,2017,722:525-531. [227] KATSUKI F,KAMEI K,SAGUCHI A,et al. AFM studies on the difference in wear behavior between Si and SiO2 in KOH solution[J]. J Electrochem Soc,2000,147(6):2328. [228] MAW W,STEVENS F,LANGFORD S,et al. Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy[J]. J Appl Phys,2002,92(9):5103-5109. [229] BHASKARAN H,GOTSMANN B,SEBASTIAN A,et al. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon[J]. Nat Nanotechnol,2010,5(3):181-185. [230] WEN Jialin,MA Tianbao,ZHANG Weiwei,et al. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment:molecular dynamics simulations using ReaxFF reactive force field[J]. Appl Surf Sci,2016,390:216-223. [231] WEN Jialin,MA Tianbao,ZHANG Weiwei,et al. Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2:ReaxFF reactive molecular dynamics simulations[J]. Comput Mater Sci,2017,131:230-238. [232] WANG Ming,DUAN Fangli,MU Xiaojing. Effect of surface silanol groups on friction and wear between amorphous silica surfaces[J]. Langmuir,2019,35(16):5463-5470. [233] CHEN Cheng,JIANG Liang,ZHANG Peng,et al. Simple method to measure the etching rate of monocrystalline silicon in KOH solution[J]. Micro Nano Lett,2018,13(4):481-485. [234] XIAO Chen,GUO Jian,ZHANG Peng,et al. Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon[J]. Sci Rep,2017,7(1):40750. [235] XIAO Chen,XIN Xiaojun,HE Xin,et al. Surface structure dependence of mechanochemical etching:Scanning probe-based nanolithography study on Si (100),Si (110),and Si (111)[J]. ACS Appl Mater Interfaces,2019,11(23):20583-20588. [236] XIE Lile,CHENG Jie,WANG Tongqing,et al. Mechanical wear behavior between CeO2 (100),CeO2 (110),CeO2 (111),and silicon studied through atomic force microscopy[J]. Tribol Int,2021,153:106616. [237] TANG Kun,OU Wangping,MAO Cong,et al. Material removal characteristics of single-crystal 4H-SiC based on varied-load nanoscratch tests[J]. Chin J Mech Eng,2023,36:111. [238] YU Jiaxin,QIAN Linmao,YU Bingjun,et al. Effect of surface hydrophilicity on the nanofretting behavior of Si (100) in atmosphere and vacuum[J]. J Appl Phys,2010,108(3):034314. [239] ZHANG Peng,CHEN Cheng,XIAO Chen,et al. Effects of surface chemical groups and environmental media on tribochemical running-in behaviors of silicon surface[J]. Tribol Int,2018,128:174-180. [240] PARK H,LIANG S,CHEN Rui. Microgrinding force predictive modelling based on microscale single grain interaction analysis[J]. Int J Manuf Technol Manag,2007,12(1-3):25-38. [241] PARK H,LIANG S. Force modeling of micro-grinding incorporating crystallographic effects[J]. Int J Mach Tools Manuf,2008,48(15):1658-1667. [242] CHENG J,GONG Y. Experimental study of surface generation and force modeling in micro-grinding of single crystal silicon considering crystallographic effects[J]. Int J Mach Tools Manuf,2014,77:1-15. [243] PARK H. Development of micro-grinding mechanics and machine tools[M]. Atlanta:Georgia Institute of Technology,2008. [244] PERVEEN A,RAHMAN M,WONG Y. Modeling and simulation of cutting forces generated during vertical micro-grinding[J]. Int J Adv Manuf Tech,2014,71:1539-1548. [245] CHENG J,WU J. Experimental investigation of fracture behaviors and subsurface cracks in micro-slot-grinding of monocrystalline sapphire[J]. J Mater Process Technol,2017,242:160-181. [246] DOMAN D,WARKENTIN A,BAUER R. Finite element modeling approaches in grinding[J]. Int J Mach Tools Manuf,2009,49(2):109-116. [247] FENG Jie,CHEN Peng,NI Jun. Prediction of grinding force in microgrinding of ceramic materials by cohesive zone-based finite element method[J]. Int J Adv Manuf Tech,2013,68:1039-1053. [248] FENG Jie,CHEN Peng,NI Jun. Prediction of surface generation in microgrinding of ceramic materials by coupled trajectory and finite element analysis[J]. Finite Elem Anal Des,2012,57:67-80. [249] JI Shijun,LIU Leilei,ZHAO Ji,et al. Finite element analysis and simulation about microgrinding of SiC[J]. J Nanomater,2015,16(1):227-227. [250] SOPELTZEV A,DYAKONOV A,PATRA K. Dynamic model of material deforming under microgrinding[J]. Procedia Eng,2015,129:127-133. [251] CHAVOSHI S,LUO Xichun. Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures[J]. Mater Sci Eng A,2016,654:400-417. [252] WANG Zhanfeng,ZHANG Junjie,XU Zongwei,et al. Crystal plasticity finite element modeling and simulation of diamond cutting of polycrystalline copper[J]. J Manuf Process,2019,38:187-195. [253] BELAK J,STOWERS I. A molecular dynamics model of the orthogonal cutting process[R]. Californis:Lawrence Livermore National Lab.,1990. [254] ZHANG Lin,ZHAO Hongwei,DAI Lu,et al. Molecular dynamics simulation of deformation accumulation in repeated nanometric cutting on single-crystal copper[J]. RSC Adv,2015,5(17):12678-12685. [255] ZHANG Shuo,QI Yunze,CHEN Junyun. Brittle-ductile transition behavior of 6H-SiC in oblique diamond cutting[J]. Int J Mech Sci,2023,246:108155. [256] CHAVOSHI S Z,GOEL S,LUO Xichun. Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting[J]. Modell Simul Mater Sci Eng,2015,24(1):015002. [257] WANG Pengcheng,YU Jingui,ZHANG Qiaoxin. Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface[J]. Comput Mater Sci,2020,184:109915. [258] VARDANYAN V,ZHANG Zhibo,ALHAFEZ I,et al. Cutting of Al/Si bilayer systems:Molecular dynamics study of twinning,phase transformation,and cracking[J]. Int J Adv Manuf Tech,2020,107:1297-1307. [259] XU Feifei,FANG Fengzhou,ZHANG Xiaodong. Hard particle effect on surface generation in nano-cutting[J]. Appl Surf Sci,2017,425:1020-1027. [260] WANG Zhanfeng,ZHANG Junjie,ZHANG Jianguo,et al. Towards an understanding of grain boundary step in diamond cutting of polycrystalline copper[J]. J Mater Process Technol,2020,276:116400. [261] LIU Shiquan,ZHANG Haijun,ZHAO Liang,et al. Coupled thermo-mechanical sticking-sliding friction model along tool-chip interface in diamond cutting of copper[J]. J Manuf Process,2021,70:578-592. [262] PACHAURY Y,SHIN Y. Assessment of sub-surface damage during machining of additively manufactured Fe-TiC metal matrix composites[J]. J Mater Process Technol,2019,266:173-183. [263] ARCHARD J. Contact and rubbing of flat surfaces[J]. J Appl Phys,1953,24(8):981-988. [264] LIU Jingjing,NOTBOHM J,CARPICK R,et al. Method for characterizing nanoscale wear of atomic force microscope tips[J]. ACS Nano,2010,4(7):3763-3772. [265] SHA Zhendong,SORKIN V,BRANICIO P,et al. Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale[J]. Appl Phys Lett,2013,103(7):073118. [266] SHAO Yuchong,JACOBS T,JIANG Yijie,et al. Multibond model of single-asperity tribochemical wear at the nanoscale[J]. ACS Appl Mater Interfaces,2017,9(40):35333-35340. [267] LIU Jingjing,JIANG Yijie,GRIERSON D,et al. Tribochemical wear of diamond-like carbon-coated atomic force microscope tips[J]. ACS Appl Mater Interfaces,2017,9(40):35341-35348. [268] HOLM R. The friction force over the real area of contact[J]. Wiss Veroff Siemens-Werk,1938,17(4):38-42. [269] AGHABABAEI R,WARNER D,MOLINARI J. Critical length scale controls adhesive wear mechanisms[J]. Nat Commun,2016,7:11816. [270] AGHABABAEI R,BRINK T,MOLINARI J. Asperity-level origins of transition from mild to severe wear[J]. Phys Rev Lett,2018,120(18):186105. [271] AGHABABAEI R,WARNER D,MOLINARI J. On the debris-level origins of adhesive wear[J]. Proc Natl Acad Sci,2017,114(30):7935-7940. [272] 肖晨. 单晶硅表面机械化学能量复合驱动微观去除机理研究[D]. 成都:西南交通大学,2019. XIAO Chen. Research on removal mechanism of silicon driven by mechanochemical synergistic energy[D]. Chengdu:Southwest Jiaotong University,2019. [273] LI Lei,YI A. Microfabrication on a curved surface using 3D microlens array projection[J]. J Micromech Microeng,2009,19(10):105010. [274] BRINKSMEIER E,SCHÖNEMANN L. Generation of discontinuous microstructures by Diamond Micro Chiseling[J]. CIRP Ann,2014,63(1):49-52. [275] YAMAMOTO Y,SUZUKI H,ONISHI T,et al. Precision grinding of microarray lens molding die with 4-axes controlled microwheel[J]. Sci Technol Adv Mater,2007,8(3):173-176. [276] HUANG Peng,TO S,ZHU Zhiwei. Diamond turning of micro-lens array on the roller featuring high aspect ratio[J]. Int J Adv Manuf Tech,2018,96:2463-2469. [277] WANG H,LEE W. A study of cutting factors affecting the generation of functional hierarchical rib array structure in ultra-precision raster milling[J]. Int J Adv Manuf Tech,2016,86:989-998. [278] AZVAR M,BUDAK E. Multi-dimensional chatter stability for enhanced productivity in different parallel turning strategies[J]. Int J Mach Tools Manuf,2017,123:116-128. [279] LI Rulin,LI Yaguo,DENG Hui. Plasma-induced atom migration manufacturing of fused silica[J]. Precis Eng,2022,76:305-313. [280] 郭东明. 高性能制造[J]. 机械工程学报,2022,58(21):225-242. GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engnieering,2022,58(21):225-242. [281] 王国彪,赖一楠,卢秉恒,等. “纳米制造的基础研究”重大研究计划结题综述[J]. 中国科学基金,2019,33(3):261-274. WANG Guobiao,LAI Yinan,LU Bingheng,et al. Review of the achievements of major research plan on “fundamental research on nanomanufacturing”[J]. Bulletin of National Natural Science Foundation of China,2019,33(3):261-274. [282] 宋凤麒,戴庆. 原子制造:物质科学的未来技术[J]. 物理,2023,52(6):371-380. SONG Fengqi,DAI Qing. Atom manufacturing:A future technique of physical sciences[J]. Physics,2023,52(6):371-380. |
[1] | 李子清, 崔长彩, 卞素标, 李慧慧, 陆静, ORIOL Arteaga, 徐西鹏. 单晶金刚石衬底超精密加工损伤层无损测量与表征[J]. 机械工程学报, 2024, 60(4): 239-249. |
[2] | 何春雷, 张建国, 王姝淇, 任成祖. 基于多波长散射光特性的铝合金超精密车削表面粗糙度测量方法研究[J]. 机械工程学报, 2023, 59(3): 308-317. |
[3] | 郭江, 杨哲, 张鹏飞, 李琳光, 俞学雯, 潘博. FeCrAl合金化学机械抛光粗糙度预测模型研究[J]. 机械工程学报, 2023, 59(23): 310-319. |
[4] | 戴一帆, 彭小强, 薛帅, 蒋庄德. 高性能光学制造[J]. 机械工程学报, 2023, 59(21): 1-14. |
[5] | 李涛, 黄惟琦, 龙归, 杨思铄, 张建国, 肖峻峰, 许剑锋. 单晶硅的激光抛光表面形貌演化[J]. 机械工程学报, 2023, 59(21): 52-64. |
[6] | 彭小强, 李煌, 王跃明, 关朝亮, 胡皓, 赖涛, 徐超. 化学镀NiP的凸面闪耀光栅超精密切削特性研究[J]. 机械工程学报, 2023, 59(21): 121-130. |
[7] | 杨洋, 林日雄, 杜建军. 超声椭圆振动切削闪耀光栅的三维形貌建模及控制方法[J]. 机械工程学报, 2023, 59(17): 291-299. |
[8] | 高尚, 李洪钢, 康仁科, 何宜伟, 朱祥龙. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报, 2021, 57(9): 213-232. |
[9] | 王振忠, 施晨淳, 张鹏飞, 杨哲, 陈熠, 郭江. 先进光学制造技术最新进展[J]. 机械工程学报, 2021, 57(8): 23-56. |
[10] | 倪自丰, 陈国美, 徐来军, 白亚雯, 李庆忠, 赵永武. 不同氧化剂对6H-SiC化学机械抛光的影响[J]. 机械工程学报, 2018, 54(19): 224-231. |
[11] | 徐少平, 路家斌, 阎秋生, 宋涛, 潘继生. 单晶SiC化学机械抛光液的固相催化剂研究[J]. 机械工程学报, 2017, 53(21): 167-173. |
[12] | 陈增源, 李莉华, 李荣彬, 袁伟, 刘亚辉. 基于超精密复眼加工的光场成像研究*[J]. 机械工程学报, 2016, 52(17): 50-57. |
[13] | 赵清亮, 孙智源, 郭兵. 碳化硅圆柱槽微结构表面的化学机械抛光[J]. 机械工程学报, 2015, 51(15): 183-189. |
[14] | 王同庆;路新春;赵德文;门延武;何永勇. 300 mm晶圆化学机械抛光机关键技术研究与实现[J]. , 2014, 50(5): 182-187. |
[15] | 赵德文;路新春;何永勇;王同庆. 化学机械抛光设备负载特性与主体结构变形[J]. , 2014, 50(15): 160-165. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 663
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 703
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||