机械工程学报 ›› 2023, Vol. 59 ›› Issue (23): 265-282.doi: 10.3901/JME.2023.23.265
叶文昌1,2, 郭必成1,2, 邓朝晖1,2, 王伟3, 邹伶俐4, 刘超5, 尹刚刚6, 姜峰1,2
收稿日期:
2022-12-17
修回日期:
2023-07-18
发布日期:
2024-02-20
通讯作者:
姜峰(通信作者),男,1981年生,教授,博士研究生导师。主要研究方向为精密超精密加工技术、切削过程数值仿真技术、刀具设计技术。E-mail:jiangfeng@hqu.edu.cn
作者简介:
叶文昌,男,1999年生。主要研究方向为刀具设计技术、数值仿真技术。E-mail:ywc13645003959@163.com
基金资助:
YE Wenchang1,2, GUO Bicheng1,2, DENG Zhaohui1,2, WANG Wei3, ZOU Lingli4, LIU Chao5, YIN Ganggang6, JIANG Feng1,2
Received:
2022-12-17
Revised:
2023-07-18
Published:
2024-02-20
摘要: 随着航空航天、医疗器械、汽车制造等领域的发展,零部件的制造越发复杂化和柔性化,对刀具智能化的需求也越来越强烈。相对于传统刀具,智能刀具融合了传感器、数据处理、数字孪生等现代技术,在机械加工中应用智能刀具对改善零件质量,提高生产效率,降低生产成本效果明显。智能刀具系统实现了从智能刀具结构设计、切削状态监测、刀具状态感知到加工反馈控制的全过程闭环管控。提出智能刀具的内涵以及使刀具智能化的多种关键技术,从刀具智能优化设计、切削状态监测、刀具状态感知、切削过程调控四个方面综述了刀具智能化关键技术的研究成果。最后总结了智能刀具系统在未来制造业中的应用前景,指出了实现刀具智能化亟待解决的问题和未来的发展方向。
中图分类号:
叶文昌, 郭必成, 邓朝晖, 王伟, 邹伶俐, 刘超, 尹刚刚, 姜峰. 刀具智能化关键技术的研究进展及发展趋势[J]. 机械工程学报, 2023, 59(23): 265-282.
YE Wenchang, GUO Bicheng, DENG Zhaohui, WANG Wei, ZOU Lingli, LIU Chao, YIN Ganggang, JIANG Feng. Advances in Key Technologies of the Intelligence Tool[J]. Journal of Mechanical Engineering, 2023, 59(23): 265-282.
[1] 中国机械工业联合会. 机械工业“十四五”发展纲要[EB/OL]. [2021-05-06]. http://www.mei.net.cn/jxgy/202105/1620303069.html. China Machinery Industry Federation. Development outline of machinery industry in the 14th five year plan[EB/OL]. [2021-05-06]. http://www.mei.net.cn/jxgy/202105/1620303069.html. [2] 刘强,张海军,刘献礼,等. 智能刀具研究综述[J]. 机械工程学报,2021,57(21):248-268. LIU Qiang, ZHANG Haijun,LIU Xianli,et al. A review of research on intelligent cutting tools [J]. Journal of Mechanical Engineering,2021,57(21):248-268. [3] MOHANRAJ T,SHANKAR S,RAJASEKAR R,et al. Tool condition monitoring techniques in milling process — a review[J]. Journal of Materials Research and Technology,2020,9(1):1032-1042. [4] JEMIELNIAK K,KOSMOL J. Tool and process monitoring-state of art and future prospects[J]. Scientific Papers of the Institute of Mechanical Engineering and Automation of the Technical University of Wroclaw,1995,61:90-112. [5] 刘献礼,李雪冰,丁明娜,等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报,2021,57(10):196-219. LIU Xianli,LI Xuebing,DING Mingna,et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering,2021,57(10):196-219. [6] 姜峰. 数值仿真之金属切削有限元仿真仿真精度保障原理及其实现[EB/OL]. [2020-03-12]. https://live.eyunbo.cn/live/38247?uin=1729. JIANG Feng. The principle of precision assurance of finite element simulation of metal cutting in numerical simulation and its implementation[EB/OL]. [2020-03-12]. https://live.eyunbo.cn/live/38247?uin=1729. [7] 肖才伟. 基于切削力感知的智能切削刀具设计及其关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2014. XIAO Caiwei. Design and key technologies research of smart cutting tool based on cutting force sensing[D]. Harbin:Harbin Institute of Technology,2014. [8] 李元祥. 集结于刀柄的切削力实时感知系统研究[D]. 秦皇岛:燕山大学,2019. LI Yuanxiang. Research on real-time sensing system of cutting force assembled on tool holder. [D]. Qinhuangdao:Yanshan University,2019. [9] 赵友,葛晓慧,赵玉龙. 高精度动态切削力自感知智能刀具的研究[J]. 机械工程学报,2020,55(21):178-185. ZHAO You,GE Xiaohui,ZHAO Yulong. Research on high precision dynamic cutting force self-perception intelligent tool[J]. Journal of Mechanical Engineering,2020,55(21):178-185. [10] ZHAO Y,ZHAO Y,WANG C,et al. Design and development of a cutting force sensor based on semi-conductive strain gauge[J]. Sensors and Actuators A:Physical,2016,237:119-127. [11] WANG X V,WANG L. Digital twin-based WEEE recycling,recovery and remanufacturing in the background of Industry 4.0[J]. International Journal of Production Research,2019,57(12):3892-3902. [12] SCHLUSE M,PRIGGEMEYER M,ATORF L,et al. E-xperimentable digital twins-Streamlining simulation- based systems engineering for industry 4.0[J]. IEEE Transactions on Industrial Informatics,2018,14(4):1722-1731. [13] LUO W,HU T,ZHANG C,et al. Digital twin for CNC machine tool:modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing,2019,10(3):1129-1140. [14] ZHANG H,LIU Q,CHEN X,et al. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access,2017,5:26901-26911. [15] ZHUANG C,LIU J,XIONG H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1):1149-1163. [16] TAO F,ZHANG H,LIU A,et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics,2018,15(4):2405-2415. [17] KONG T,HU T,ZHOU T,et al. Data construction method for the applications of workshop digital twin system[J]. Journal of Manufacturing Systems,2021,58:323-328. [18] BOTKINA D,HEDLIND M,OLSSON B,et al. Digital twin of a cutting tool[J]. Procedia CIRP,2018,72:215-218. [19] TONG X,LIU Q,PI S,et al. Real-time machining data application and service based on IMT digital twin[J]. Journal of Intelligent Manufacturing,2020,31(5):1113-1132. [20] BYRNE G,DORNFELD D,INASAKI I,et al. Tool condition monitoring (TCM)—the status of research and industrial application[J]. CIRP Annals,1995,44(2):541-567. [21] AMBHORE N,KAMBLE D,CHINCHANIKAR S,et al. Tool condition monitoring system:A review[J]. Materials Today:Proceedings,2015,2(4-5):3419-3428. [22] KUNTOĞLU M,SAĞLAM H. Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning[J]. Measurement,2021,173:108582. [23] LIAO Y S. Development of a monitoring technique for tool change purpose in turning operations[C]//Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference. Palgrave,London,1986:331-337. [24] AL-SULAIMAN F A,BASEER M A,Sheikh A K. Use of electrical power for online monitoring of tool condition[J]. Journal of Materials Processing Technology,2005,166(3):364-371. [25] AXINTE D,GINDY N. Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes[J]. International journal of production research,2004,42(13):2679-2691. [26] FRANCO-GASCA L A,HERRERA-RUIZ G,PENICHE-VERA R,et al. Sensorless tool failure monitoring system for drilling machines[J]. International Journal of Machine Tools and Manufacture,2006,46(3-4):381-386. [27] EYNIAN M,DAS K,WRETLAND A. Effect of tool wear on quality in drilling of titanium alloy Ti6Al4V,Part I:Cutting forces,burr formation,surface quality and defects[J]. High speed mach,2017,3(1):1-10. [28] ZHUANG C,LIU J,XIONG H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1):1149-1163. [29] DIMLA SR D E,LISTER P M. On-line metal cutting tool condition monitoring I:Force and vibration analyses[J]. International Journal of Machine Tools and Manufacture,2000,40(5):739-768. [30] OSTASEVICIUS V,JURENAS V,AUGUTIS V,et al. Monitoring the condition of the cutting tool using self-powering wireless sensor technologies[J]. The International Journal of Advanced Manufacturing Technology,2017,88(9):2803-2817. [31] LIANG Q,ZHANG D,WU W,et al. Methods and research for multi-component cutting force sensing devices and approaches in machining[J]. Sensors,2016,16(11):1926. [32] RIZAL M,GHANI J A. Design and construction of a strain gauge-based dynamometer for a 3-axis cutting force measurement in turning process[J]. Journal of Mechanical Engineering and Sciences,2018,12(4):4072-4087. [33] ZHAO Y,ZHAO Y L,SHAO Y W,et al. Research of a smart cutting tool based on MEMS strain gauge[C]//Journal of Physics:Conference Series. IOP Publishing,2018,986(1):012016. [34] GONG T,ZHAO Y,ZHAO Y,et al. Design and manufacturing of a high-sensitivity cutting force sensor based on AlSiCO ceramic[J]. Micromachines,2021,12(1):63. [35] HUANG J,PHAM D T,JI C,et al. Smart cutting tool integrated with optical fiber sensors for cutting force measurement in turning[J]. IEEE Transactions on Instrumentation and Measurement,2019,69(4):1720-1727. [36] CHENG K,NIU Z C,WANG R C,et al. Smart cutting tools and smart machining:development approaches,and their implementation and application perspectives[J]. Chinese Journal of Mechanical Engineering,2017,30(5):1162-1176. [37] XIAO C W,CHENG K,DING H,et al. Design and analysis of a self-sensing smart cutting tool integrated piezoelectric films for cutting force monitoring in ultra-precision machining[C]//2013 Symposium on Piezoelectricity,Acoustic Waves,and Device Applications. IEEE,2013:1-4. [38] CHEN X,CHENG K,WANG C. Design of a smart turning tool with application to in-process cutting force measurement in ultraprecision and micro cutting[J]. Manufacturing Letters,2014,2(4):112-117. [39] 李文德,丁辉,程凯. 基于声表面波原理的切削力测量智能刀具研究[J]. 机械制造与自动化,2014,43(5):46-50. LI Wende,DING Hui,CHENG Kai. Research on force measuring smart cutting tool based onsurface acoustic wave resonator principle[J]. Machine Building & Automation,2014,43(5):46-50. [40] WANG C,CHENG K,CHEN X,et al. Design of an instrumented smart cutting tool and its implementation and application perspectives[J]. Smart Materials and Structures,2014,23(3):035019. [41] XIE Z,LU Y,LI J. Development and testing of an integrated smart tool holder for four-component cutting force measurement[J]. Mechanical Systems and Signal Processing,2017,93:225-240. [42] WU F,LI Y,GUO B,et al. The design of force measuring tool holder system based on wireless transmission[J]. IEEE Access,2018,6:38556-38566. [43] SZULEWSKI P,NIEGULSKA-GRDZKA D,NEJMAN M. Intelligent sensors in modern machine tools[J]. Mechanik,2019,92(11):686-692. [44] LONGBOTTOM J M,LANHAM J D. Cutting temperature measurement while machining–a review[J]. Aircraft Engineering and Aerospace Technology,2005. [45] 查旭明. 双层与纳米多层结构TiSiN/TiAlN涂层的力学及切削性能研究[D]. 厦门:华侨大学,2020. ZHA Xuming. Mechanical and cutting properties of bilayer and nano-multilayerstructures of TiSiN/TiAlN coatings[D]. Xiamen:Huaqiao University,2020. [46] SUDIANTO A,JAMALUDIN Z,RAHMAN A A A,et al. Automatic Temperature Measurement and Monitoring System for Milling Process of AA6041 Aluminum Aloy using MLX90614 Infrared Thermometer Sensor with Arduino[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,2021,82(2):1-14. [47] LIN J,LIU C Y. Measurement of cutting tool temperature by an infrared pyrometer[J]. Measurement Science and Technology,2001,12(8):1243. [48] KUS A,ISIK Y,CAKIR M C,et al. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting[J]. Sensors,2015,15(1):1274-1291. [49] 郭必成,王福增,黄辉,等. 金属切削仿真的驱动模型及其耦合机制研究[J/OL].计算机集成制造系统,2022:1-18[2022-03-22]. GUO Bicheng,WANG Fuzeng,HUANG Hui,et al. Driving model and coupling mechanism of metal cutting simulation[J/OL]. Computer Integrated Manufacturing Systems,2022:1-18[2022-03-22]. [50] SEEMANN K,BEIRLE S,THEDE C,et al. Contactless monitoring of temperature change in cutting inserts by application of hard coatings and ferromagnetic film sensor phases[J]. Sensors and Actuators A:Physical,2019,296:278-285. [51] HAN J,CAO K,XIAO L,et al. In situ measurement of cutting edge temperature in turning using a near-infrared fiber-optic two-color pyrometer[J]. Measurement,2020,156:107595. [52] LI T,SHI T,TANG Z,et al. Real-time tool wear monitoring using thin-film thermocouple[J]. Journal of Materials Processing Technology,2021,288:116901. [53] LI J,TAO B,HUANG S,et al. Cutting tools embedded with thin film thermocouples vertically to the rake face for temperature measurement[J]. Sensors and Actuators A:Physical,2019,296:392-399. [54] KESRIKLIOGLU S,ARTHUR C,MORROW J D,et al. Characterization of tool–chip interface temperature measurement with thermocouple fabricated directly on the rake face[J]. Journal of Manufacturing Science and Engineering,2019,141(9):091008. [55] WERSCHMOELLER D,LI X. Measurement of tool internal temperatures in the tool–chip contact region by embedded micro thin film thermocouples[J]. Journal of Manufacturing Processes,2011,13(2):147-152. [56] CUI Y,LIU Q,WANG L,et al. Research on milling temperature measuring tool embedded with NiCr/NiSi thin film thermocouple[J]. Procedia CIRP,2018,72:1457-1462. [57] SHINOZUKA J,BASTI A,OBIKAWA T. Development of cutting tool with built-in thin film thermocouples for measuring high temperature fields in metal cutting processes[J]. Journal of Manufacturing Science and Engineering,2008,130(3). [58] CHUNG T K,YEH P C,LEE H,et al. An attachable electromagnetic energy harvester driven wireless sensing system demonstrating milling-processes and cutter-wear/breakage-condition monitoring[J]. Sensors,2016,16(3):269. [59] SUPROCK C A,FUSSELL B K,HASSAN R Z,et al. A low cost wireless tool tip vibration sensor for milling[C]//International Manufacturing Science and Engineering Conference. 2008,48517:465-474. [60] 刘海军. 面向铣削过程的无线测振刀柄的关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2015. LIU Haijun. Research for key technology of virbration-detecting and wireless-transmitting tool holder in milling process[D]. Harbin:Harbin Institute of Technology,2015. [61] 陈奇伟. 面向铣削加工的测振刀柄设计与试验研究[D].南京:南京航空航天大学,2019. CHEN Qiwei. Design and experimental study of vibration-measuring tool handle for milling. [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [62] DEVILLEZ A,DUDZINSKI D. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers[J]. Mechanical systems and signal processing,2007,21(1):441-456. [63] MIN B K,O'NEAL G,KOREN Y,et al. A smart boring tool for process control[J]. Mechatronics,2002,12(9-10):1097-1114. [64] ASLAN D,ALTINTAS Y. On-line chatter detection in milling using drive motor current commands extracted from CNC[J]. International Journal of Machine Tools and Manufacture,2018,132:64-80. [65] ZHA X,JIANG F,XU X. Investigating the high frequency fatigue failure mechanisms of mono and multilayer PVD coatings by the cyclic impact tests[J]. Surface and Coatings Technology,2018,344:689-701. [66] GUO Bicheng,JIANG Feng,YAN Lan,et al. Research on the analytical modeling of critical conditions of serrated Chip formation based on thermal-mechanical coupled material behavior[J]. Journal of Manufacturing Processes,2021,68:71-84. [67] KULJANIC E,TOTIS G,SORTINO M. Development of an intelligent multisensor chatter detection system in milling[J]. Mechanical Systems and Signal Processing,2009,23(5):1704-1718. [68] WANG J,XIE J,ZHAO R,et al. Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2017,45:47-58. [69] BINSAEID S,ASFOUR S,CHO S,et al. Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion[J]. Journal of Materials Processing Technology,2009,209(10):4728-4738. [70] WANG W H,HONG G S,WONG Y S,et al. Sensor fusion for online tool condition monitoring in milling[J]. International Journal of Production Research,2007,45(21):5095-5116. [71] 巩亚东,吕洋,王宛山,等. 基于多传感器融合的磨削砂轮钝化的智能监测[J]. 东北大学学报,2003(3):248-251. GONG Yadong,LÜ Yang,WANG Wanshan,et al. Intelligent monitoring for grinding wheel passivation based on multi-sensor fusion[J]. Journal of Northeastern University(Natural Science),2003(3):248-251. [72] CHEN S L,JEN Y W. Data fusion neural network for tool condition monitoring in CNC milling machining[J]. International Journal of Machine Tools & Manufacture,2000,40(3):381-400. [73] BAHR B,MOTAVALLI S,ARFI T. Sensor fusion for monitoring machine tool conditions[J]. International Journal of Computer Integrated Manufacturing,1997,10(5):314-323. [74] SINGH A,THAKUR N,SHARMA A. A review of supervised machine learning algorithms[C]//20163rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE,2016:1310-1315. [75] GU J,WANG Z,KUEN J,et al. Recent advances in convolutional neural networks[J]. Pattern Recognition,2018,77:354-377. [76] LIU C,WANG G F,LI Z M. Incremental learning for online tool condition monitoring using Ellipsoid ARTMAP network model[J]. Applied Soft Computing,2015,35:186-198. [77] BOUHALAIS M L,NOUIOUA M. The analysis of tool vibration signals by spectral kurtosis and ICEEMDAN modes energy for insert wear monitoring in turning operation[J]. The International Journal of Advanced Manufacturing Technology,2021,115(9):2989-3001. [78] GOMES M C,BRITO L C,DA SILVA M B,et al. Tool wear monitoring in micromilling using Support Vector Machine with vibration and sound sensors[J]. Precision Engineering,2021,67:137-151. [79] KANNAN K,ARUNACHALAM N,CHAWLA A,et al. Multi-sensor data analytics for grinding wheel redress life estimation-an approach towards industry 4.0[J]. Procedia Manufacturing,2018,26:1230-1241. [80] HUANG Z,ZHU J,LEI J,et al. Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations[J]. Journal of Intelligent Manufacturing,2020,31(4):953-966. [81] MA M,SUN C,CHEN X,et al. A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals[J]. IEEE Transactions on Industrial Informatics,2019,15(12):6415-6424. [82] CHEN J C,CHEN W L. A tool breakage detection system using an accelerometer sensor[J]. Journal of Intelligent Manufacturing,1999,10(2):187-197. [83] CHO S,ASFOUR S,ONAR A,et al. Tool breakage detection using support vector machine learning in a milling process[J]. International Journal of Machine Tools and Manufacture,2005,45(3):241-249. [84] LI G,YANG X,CHEN D,et al. Tool breakage detection using deep learning[C]//2018 IEEE International Conference on Big Data,Cloud Computing,Data Science & Engineering (BCD). IEEE,2018. [85] 田效康. 基于数字孪生的机床加工过程虚拟仿真监控系统研究与实现[D]. 成都:电子科技大学,2021. TIAN Xiaokang. Research and implementation of virtual simulation monitoring system for machine tool machining process based on digital twin[D]. Chengdu:University of Electronic Science and Technology of China,2021. [86] ZHAO P,LIU J,JING X,et al. The modelling and using strategy for the digital twin in process planning[J]. IEEE Access,2020,PP(99):1-1. [87] XIE Y,LIAN K,LIU Q,et al. Digital twin for cutting tool:Modeling,application and service strategy[J]. Journal of Manufacturing Systems,2021,58:305-312. [88] ZHANG G,SUN H. Enabling cutting tool services based on in-process machining condition monitoring[J]. International Journal of Internet Manufacturing and Services,2018,5(1):51-66. [89] 孙惠斌,潘军林,张纪铎,等. 面向切削过程的刀具数字孪生模型[J]. 计算机集成制造系统,2019,25(6):1474-1480. SUN Huibin,PAN Junlin,ZHANG Jiduo ,et al. Digital twin model for cutting tools in machining [J]. Computer integrated manufacturing system. 2019,25(6):1474-1480. [90] SUN H,CAO D,ZHAO Z,et al. A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process[J]. IEEE Transactions on Reliability,2018,67(3):1294-1303. [91] HERRERA-GRANADOS G,MORITA N,HIDAI H,et al. Development of a non-rigid micro-scale cutting mechanism applying a normal cutting force control system[J]. Precision Engineering,2016,43:544-553. [92] ROBER S J,SHIN Y C,NWOKAH O D I. A digital robust controller for cutting force control in the end milling process[J]. 1997 [93] SHU S R,DING H,CHEN S J,et al. FEM-based design and analysis of a smart cutting tool with internal cooling for cutting temperature measurement and control[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd,2012,217:1874-1879. [94] SHU S,CHENG K,DING H,et al. An innovative method to measure the cutting temperature in process by using an internally cooled smart cutting tool[J]. Journal of Manufacturing Science and Engineering,2013,135(6). [95] ÖZTÜRK E,YILDIZLI K,SAĞLAM F. Investigation on an innovative internally cooled smart cutting tool with the built-in cooling-control system[J]. Arabian Journal for Science and Engineering,2021,46(3):2397-2411. [96] SUN X,BATEMAN R,CHENG K,et al. Design and analysis of an internally cooled smart cutting tool for dry cutting[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2012,226(4):585-591. [97] MATSUBARA A,MAEDA M,YAMAJI I. Vibration suppression of boring bar by piezoelectric actuators and LR circuit[J]. CIRP Annals,2014,63(1):373-376. [98] RADECKI P P,FARINHOLT K M,PARK G,et al. Vibration suppression in cutting tools using a collocated piezoelectric sensor/actuator with an adaptive control algorithm[J]. Journal of vibration and acoustics,2010,132(5). [99] EL-SINAWI A H. Two-dimensional vibration suppression in turning using optimal control of the cutting tool[J]. International Journal of Machining and Machinability of Materials,2008,3(1-2):91-103. [100] ZHANG X,WANG C,GAO R X,et al. A novel hybrid error criterion-based active control method for on-line milling vibration suppression with piezoelectric actuators and sensors[J]. Sensors,2016,16(1):68. [101] WANG S M,CHEN Y S,LEE C Y,et al. Methods of in-process on-machine auto-inspection of dimensional error and auto-compensation of tool wear for precision turning[J]. Applied Sciences,2016,6(4):107. [102] WANG S M,LIN J J,YE Z Z,et al. A micro cutter auto-alignment system with on-machine positioning error measurement and compensation methods[J]. International journal of precision engineering and manufacturing,2014,15(1):177-182. [103] GUO H,XIONG G,XI F,et al. Detection and compensation of cutting tool wear based on Lipschitz exponent[C]//Proceedings of 2005 IEEE Conference on Control Applications,2005. CCA 2005. IEEE,2005:1662-1667. [104] CHOUDHURY S K,JAIN V K,RAMA KRISHNA S. On-line monitoring of tool wear and control of dimensional inaccuracy in turning[J]. J. Manuf. Sci. Eng.,2001,123(1):10-1. [105] WANG Z,ZHOU R,HU C,et al. Online iterative learning compensation method based on model prediction for trajectory tracking control systems[J]. IEEE Transactions on Industrial Informatics,2021,18(1):415-425. |
[1] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[2] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[3] | 姜文涛, 刘晓明, 李培源, 陈海, 张煦松. 机械式真空快速切换开关机构多目标优化设计[J]. 机械工程学报, 2024, 60(6): 153-162. |
[4] | 刘达新, 王科, 刘振宇, 许嘉通, 谭建荣. 基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究[J]. 机械工程学报, 2024, 60(5): 36-50. |
[5] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[6] | 石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81. |
[7] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[8] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[9] | 刘岳开, 王天杨, 褚福磊. 基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究[J]. 机械工程学报, 2024, 60(12): 107-115. |
[10] | 黄勇军, 郭强, 李山, 程福泉. 不平衡下电流源型PWM整流器无网侧电流传感器功率反馈控制策略*[J]. 电气工程学报, 2023, 18(3): 184-195. |
[11] | 侯正航, 何卫平, 王淑侠, 胡余彭, 肖一帆. 基于数字孪生的弧齿型导引头伺服机构动态装调技术研究[J]. 机械工程学报, 2023, 59(22): 433-443. |
[12] | 李宏坤, 魏代同, 陈玉刚, 许书本. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023, 59(21): 270-282. |
[13] | 黄晶, 陈紫琳, 杨梦婷, 彭晓燕. 自适应自动驾驶等级的驾驶人状态监测模型研究[J]. 机械工程学报, 2023, 59(2): 187-198. |
[14] | 谭建荣, 高铭宇, 徐敬华, 王林轩, 贾晨, 张树有, 王康. 数智化正向设计方法及其在制造装备与过程中的应用[J]. 机械工程学报, 2023, 59(19): 111-125. |
[15] | 周祖德, 姚碧涛. 数字制造的科学体系与技术架构[J]. 机械工程学报, 2023, 59(19): 126-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||