• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (1): 278-285.doi: 10.3901/JME.2023.01.278

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

基于改进PCANet模型的铣刀磨损预测方法研究

段暕1, 周宏娣2, 刘智勇1, 詹小斌1, 梁健强1, 史铁林1   

  1. 1. 华中科技大学机械科学与工程学院 武汉 430074;
    2. 湖北工业大学机械工程学院 武汉 430068
  • 收稿日期:2021-12-28 修回日期:2022-07-04 出版日期:2023-01-05 发布日期:2023-03-30
  • 通讯作者: 史铁林(通信作者),男,1964年出生,博士,教授,博士研究生导师。主要研究方向为信号分析、状态监测与故障诊断和人工智能。E-mail:tlshi@hust.edu.com
  • 作者简介:段暕,男,1994年出生,博士后。主要研究方向为刀具状态监测、设备健康保障和深度学习。E-mail:duanjian121@outlook.com
  • 基金资助:
    广东省重点研发计划(2020B090927002)、国家自然科学基金(52205103,52005168)和国家重点研发计划(2020YFB1709801)资助项目。

Milling Tool Wear Prediction Research Based on Optimized PCANet Model

DUAN Jian1, ZHOU Hongdi2, LIU Zhiyong1, ZHAN Xiaobin1, LIANG Jianqiang1, SHI Tielin1   

  1. 1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    2. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068
  • Received:2021-12-28 Revised:2022-07-04 Online:2023-01-05 Published:2023-03-30

摘要: 铣刀健康状况直接影响实际生产加工过程,因此开展铣刀状态监测研究具有较大工程意义。以卷积神经网络为代表的深度学习模型已经逐渐用于监测加工过程中的刀具状态。但是这些模型的可解释性较差,预测结果的差异性也较大。作为一种新颖的卷积神经网络变种,主成分分析模型(Principal component analysis network,PCANet)的可解释性好,但是特征自监督学习能力有待提升,且相关应用案例较少。针对以上问题,拟对PCANet模型进行优化,进而提出了一种激活主成分分析-最大池化-支持向量回归(Activated PCANet with max pooling and support vector regression,APCANet-MP-SVR)模型,用于自适应提取敏感特征并准确预测刀具磨损情况。首先引入tanh激活函数,提高模型泛化能力;再采用最大池化层替代哈希编码和直方图用于特征选择,进一步降低冗余特征规模;最后建立支持向量回归模型实时预测刀具磨损值。应用案例充分证明了所提模型能够更好地用于加工现场刀具磨损值预测。

关键词: 刀具磨损, 深度学习, PCANet, 激活函数, 池化层

Abstract: Milling tool wear condition affects real production. Thus, study on tool condition monitoring has great importance in engineering. Deep learning models, for example convolutional neural network, have been applied in tool condition monitoring during milling process. Yet the model interpretability is poor, and the prediction results vary a lot. As a novel variant of convolutional neural network, principal component analysis network (PCANet) model is well-explained. However, the self-supervised features extraction capacity still requires improvement, and few industrial cases have been studied. In order to address these problems, original PCANet model structure is optimized, then activated PCANet with max pooling and support vector regression (APCANet-MP-SVR) model is proposed to extract sensitive features in unsupervised way and predict tool wear accurately. In detail, tanh activation function is applied to improve model generalization capacity, and then max pooling layer is introduced for features selection to replace complex Hash encoding and spectrum process. In the end, support vector regression is utilized to predict current tool wear. Case has been further studied to validate the brilliant performance and industrial suitability of the proposed model.

Key words: tool wear, deep learning, PCANet, activation function, pooling layer

中图分类号: